16 research outputs found

    Defect properties of InGaAsN layers grown as sub-monolayer digital alloys by molecular beam epitaxy

    No full text
    International audienceThe defect properties of InGaAsN dilute nitrides grown as sub-monolayer digital alloys (SDAs) by molecular beam epitaxy for photovoltaic application were studied by space charge capacitance spectroscopy. Alloys of i-InGaAsN (Eg = 1.03 eV) were lattice-matched grown on GaAs wafers as a superlattice of InAs/GaAsN with one monolayer of InAs (<0.5 nm) between wide GaAsN (7–12 nm) layers as active layers in single-junction solar cells. Low p-type background doping was demonstrated at room temperature in samples with InGaAsN layers 900 nm and 1200 nm thick (less 1 × 1015 cm−3). According to admittance spectroscopy and deep-level transient spectroscopy measurements, the SDA approach leads to defect-free growth up to a thickness of 900 nm. An increase in thickness to 1200 nm leads to the formation of non-radiative recombination centers with an activation energy of 0.5 eV (NT = 8.4 × 1014 cm−3) and a shallow defect level at 0.20 eV. The last one leads to the appearance of additional doping, but its concentration is low (NT = 5 × 1014 cm−3) so it does not affect the photoelectric properties. However, further increase in thickness to 1600 nm, leads to significant growth of its concentration to (3–5) × 1015 cm−3, while the concentration of deep levels becomes 1.3 × 1015 cm−3. Therefore, additional free charge carriers appearing due to ionization of the shallow level change the band diagram from p-i-n to p-n junction at room temperature. It leads to a drop of the external quantum efficiency due to the effect of pulling electric field decrease in the p-n junction and an increased number of non-radiative recombination centers that negatively impact lifetimes in InGaAsN

    Attenuated Total Reflection-Infrared Nanofluidic Chip with 71 nL Detection Volume for in Situ Spectroscopic Analysis of Chemical Reaction Intermediates

    Get PDF
    We present a micromachined silicon attenuated total reflection-infrared (ATR-IR) crystal with integrated nanofluidic glass channels which enables infrared spectroscopic studies with only 71 nL sample volume. Because of the short path length through silicon, the system allows IR spectroscopy down to 1200 cm–1, which covers the typical fingerprint region of most organic compounds. To demonstrate proof-of-principle, the chip was used to study a Knoevenagel condensation reaction between malononitrile and p-anisaldehyde catalyzed by different concentrations of 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) in solvent acetonitrile. By in situ measurement, it was demonstrated for the first time that at certain concentrations of DBU, reaction intermediates become stabilized, an effect that slows down or even stops the reaction. This is thought to be caused by increased ionic character of the solvent, in which protonated DBU stabilizes the intermediates. This clearly demonstrates that infrared mechanistic studies of chemical reactions are feasible in volumes as little as 71 nL.\u
    corecore