3 research outputs found
Harmonikus analĂzis Ă©s additĂv kombinatorika = Harmonic analysis and additive combinatorics
A jelen pĂĄlyĂĄzatban több cikkĂŒnkben kutatĂĄst folytattunk kĂŒlönbözĆ struktĂșrĂĄkban összeg- Ă©s kĂŒlönbsĂ©ghalmazok elemszĂĄmĂĄra vonatkozĂłan. ĂltalĂĄnosĂtottuk nem kommutatĂv struktĂșrĂĄkban PlĂŒnnecke-tĂ©telĂ©t. EredmĂ©nyeket Ă©rtĂŒnk el kommutatĂv csoportokban a Freiman tĂ©tel ĂĄltalĂĄnosĂtĂĄsĂĄra. Ritka halmazok összeghalmazĂĄban talĂĄlhatĂł szĂĄmtani sorozatok hosszĂĄra adtunk becslĂ©st. Az ismert legerĆsebb formĂĄban igazoljuk a Balog-SzemerĂ©di tĂ©telt. Hilbert kockĂĄkat vizsgĂĄltunk vĂ©letlen halmazokban Ă©s extremĂĄlis szempontbĂłl. EredmĂ©nyeink elĂ©rĂ©sĂ©hez kombinatorikus, valĂłszĂnƱsĂ©gszĂĄmĂtĂĄsi mĂłdszereket, valamint exponenciĂĄlis összegeket hasznĂĄltunk. | We have several new publications in which we study the size of sum and/or difference sets in various structures. For example, the generalization of PlĂŒnnecke's Theorem to non-commutative groups is provided. Furthermore we have partial results towards the generalization of Freiman's Theorem in commutative groups. We have found new bounds for the length of the longest arithmetic progressions in the sumset of sparse sets. We have proved the Balog-SzemerĂ©di's Theorem in the strongest form at present. We have studied Hilbert's cubes in random sets, we have done it from extremal point of view as well. To derive the above results we have used combinatorial and probabilistic methods frequently with a combination of the method of trigonometric sums and Fourier-analysis