18,258 research outputs found

    Zero-field and Larmor spinor precessions in a neutron polarimeter experiment

    Full text link
    We present a neutron polarimetric experiment where two kinds of spinor precessions are observed: one is induced by different total energy of neutrons (zero-field precession) and the other is induced by a stationary guide field (Larmor precession). A characteristic of the former is the dependence of the energy-difference, which is in practice tuned by the frequency of the interacting oscillating magnetic field. In contrast the latter completely depends on the strength of the guide field, namely Larmor frequency. Our neutron-polarimetric experiment exhibits individual tuning as well as specific properties of each spinor precession, which assures the use of both spin precessions for multi-entangled spinor manipulation.Comment: 12 pages, 4 figure

    Noncyclic Pancharatnam phase for mixed state SU(2) evolution in neutron polarimetry

    Full text link
    We have measured the Pancharatnam relative phase for spin-1/2 states. In a neutron polarimetry experiment the minima and maxima of intensity modulations, giving the Pancharatnam phase, were determined. We have also considered general SU(2) evolution for mixed states. The results are in good agreement with theory.Comment: 5 pages, 4 figures, to be published in Phys.Lett.

    Superconductivity of Quasi-One-Dimensional Electrons in Strong Magnetic Field

    Full text link
    The superconductivity of quasi-one-dimensional electrons in the magnetic field is studied. The system is described as the one-dimensional electrons with no frustration due to the magnetic field. The interaction is assumed to be attractive between electrons in the nearest chains, which corresponds to the lines of nodes of the energy gap in the absence of the magnetic field. The effective interaction depends on the magnetic field and the transverse momentum. As the magnetic field becomes strong, the transition temperature of the spin-triplet superconductivity oscillates, while that of the spin-singlet increases monotonically.Comment: 15 pages, RevTeX, 3 PostScript figures in uuencoded compressed tar file are appende

    Violation of Bell-like Inequality for spin-energy entanglement in neutron polarimetry

    Full text link
    Violation of a Bell-like inequality for a spin-energy entangled neutron state has been confirmed in a polarimetric experiment. The proposed inequality, in Clauser-Horne-Shimony-Holt (CHSH) formalism, relies on correlations between the spin and energy degree of freedom in a single-neutron system. The entangled states are generated utilizing a suitable combination of two radio-frequency fields in a neutron polarimeter setup. The correlation function S is determined to be 2.333+/-0.005, which violates the Bell-like CHSH inequality by more than 66 standard deviations.Comment: 4 pages 2 figure

    A Comparative Study of Infrared Asteroid Surveys: IRAS, AKARI, and WISE

    Full text link
    We present a comparative study of three infrared asteroid surveys based on the size and albedo data from the Infrared Astronomical Satellite (IRAS), the Japanese infrared satellite AKARI, and the Wide-field Infrared Survey Explorer (WISE). Our study showed that: (i) the total number of asteroids detected with diameter and albedo information with these three surveyors is 138,285, which is largely contributed by WISE; (ii) the diameters and albedos measured by the three surveyors for 1,993 commonly detected asteroids are in good agreement, and within +/-10% in diameter and +/-22% in albedo at 1sigma deviation level. It is true that WISE offers size and albedo of a large fraction (>20%) of known asteroids down to a few km bodies, but we would suggest that the IRAS and AKARI catalogs compensate for larger asteroids up to several hundred km, especially in the main belt region. We discuss the complementarity of these three catalogs in order to facilitate the use of these data sets for characterizing the physical properties of minor planets.Comment: 21 pages, 19 figures, and 2 tables, accepted for publication in PAS

    Assessing Public Priorities for Police Oversight in King County

    Get PDF
    Over the last century, police oversight offices emerged to address police misconduct and promote public confidence, including four oversight offices within King County. Although oversight offices are intended to represent the interests of the public, they rarely or irregularly solicit public opinion. An online survey was developed to answer the general research question, “What are the public’s priorities for police oversight in King County?” and it appears to be the first attitudinal survey of its kind in the United States. A total of 1,700 survey responses were recorded, of which 1,110 were completed with 60% or higher item response by King Countybased respondents. Results reveal that the issues of most importance to the public of King County are: ensuring the public receives timely, accurate updates about a case following a deadly force incident (52%); tracking trends in police use of force (52%); providing general support and guidance to families following a use-of-force incident (47%); and monitoring the development and implementation of police training curricula (47%). An overwhelming majority of respondents believe that the use of dash or body cameras will improve the quality of policing and police accountability (74%). The study also gauged public experiences with oversight. Statistical testing confirms significant relationships between experience with oversight and gender, race, age, political identity, and having familial ties to law enforcement

    Quantum Hall Effect in Three-dimensional Field-Induced Spin Density Wave Phases with a Tilted Magnetic Field

    Full text link
    The quantum Hall effect in the three-dimensional anisotropic tight-binding electrons is investigated in the field-induced spin density wave phases with a magnetic field tilted to any direction. The Hall conductivity, σxy\sigma_{xy} and σxz\sigma_{xz}, are shown to be quantized as a function of the wave vector of FISDW, while σyz\sigma_{yz} stays zero, where xx is the most conducting direction and yy and zz are perpendicular to xx.Comment: 18 pages, REVTeX 3.0, 1 figure is available upon request, to be published in Physical Review

    Fermionic bright soliton in a boson-fermion mixture

    Full text link
    We use a time-dependent dynamical mean-field-hydrodynamic model to study the formation of fermionic bright solitons in a trapped degenerate Fermi gas mixed with a Bose-Einstein condensate in a quasi-one-dimensional cigar-shaped geometry. Due to a strong Pauli-blocking repulsion among spin-polarized fermions at short distances there cannot be bright fermionic solitons in the case of repulsive boson-fermion interactions. However, we demonstrate that stable bright fermionic solitons can be formed for a sufficiently attractive boson-fermion interaction in a boson-fermion mixture. We also consider the formation of fermionic solitons in the presence of a periodic axial optical-lattice potential. These solitons can be formed and studied in the laboratory with present technology.Comment: 7 pages, 7 ps figure

    Towards a relativistic statistical theory

    Full text link
    In special relativity the mathematical expressions, defining physical observables as the momentum, the energy etc, emerge as one parameter (light speed) continuous deformations of the corresponding ones of the classical physics. Here, we show that the special relativity imposes a proper one parameter continuous deformation also to the expression of the classical Boltzmann-Gibbs-Shannon entropy. The obtained relativistic entropy permits to construct a coherent and selfconsistent relativistic statistical theory [Phys. Rev. E {\bf 66}, 056125 (2002); Phys. Rev. E {\bf 72}, 036108 (2005)], preserving the main features (maximum entropy principle, thermodynamic stability, Lesche stability, continuity, symmetry, expansivity, decisivity, etc.) of the classical statistical theory, which is recovered in the classical limit. The predicted distribution function is a one-parameter continuous deformation of the classical Maxwell-Boltzmann distribution and has a simple analytic form, showing power law tails in accordance with the experimental evidence.Comment: Physica A (2006). Proof correction
    • 

    corecore