55 research outputs found

    Inter-isotope determination of ultracold rubidium interactions from three high-precision experiments

    Get PDF
    Combining the measured binding energies of four of the most weakly bound rovibrational levels of the 87^{87}Rb2_2 molecule with the results of two other recent high-precision rubidium experiments, we obtain exceptionally strong constraints on the atomic interaction parameters in a highly model independent analysis. The comparison of 85^{85}Rb and 87^{87}Rb data, where the two isotopes are related by a mass scaling procedure, plays a crucial role. Using the consistent picture of the interactions that thus arises we are led to predictions for scattering lengths, clock shifts, Feshbach resonance fields and widths with an unprecedented level of accuracy. To demonstrate this, we predict two Feshbach resonances in mixed-spin scattering channels at easily accessible magnetic field strengths, which we expect to play a role in the damping of coherent spin oscillations

    Exact asymptotic form of the exchange interactions between shallow centers in doped semiconductors

    Full text link
    The method developed in [L. P. Gor'kov and L. P. Pitaevskii, Sov. Phys. Dokl. 8, 788 (1964); C. Herring and M. Flicker, Phys. Rev. 134, A362 (1964)] to calculate the asymptotic form of exchange interactions between hydrogen atoms in the ground state is extended to excited states. The approach is then applied to shallow centers in semiconductors. The problem of the asymptotic dependence of the exchange interactions in semiconductors is complicated by the multiple degeneracy of the ground state of an impurity (donor or acceptor) center in valley or band indices, crystalline anisotropy and strong spin-orbital interactions, especially for acceptor centers in III-V and II-VI groups semiconductors. Properties of two coupled centers in the dilute limit can be accessed experimentally, and the knowledge of the exact asymptotic expressions, in addition to being of fundamental interest, must be very helpful for numerical calculations and for interpolation of exchange forces in the case of intermediate concentrations. Our main conclusion concerns the sign of the magnetic interaction -- the ground state of a pair is always non-magnetic. Behavior of the exchange interactions in applied magnetic fields is also discussed

    Expansions for the eigenvalues of three-term recurrence relations. Two applications in molecular physics

    No full text
    Approximate expressions for the eigenvalue of a three-term recurrence relation with a general form describing various physical problems are proposed. Their range of availability is examined by comparison with exact values for two different problems: the bound and continuum states of monoelectronic diatomic ions and the Schrödinger equation describing molecular alignment in intense laser fields. For each case, very good predictions have been obtained, which may be useful as initial values in iterative procedures for deriving exact solutions
    corecore