Closed form formulas for the Rosen-Morse and ManningRosen rotation-vibration intensities from ladder operator considerations

N. Bersiss, G. Bisese and G. Hadinger
Laboratoire de Spectroscopie et de Luminescence, Universite Claude Bernard, Lyon I, 69621, Villeurbanne, France

(Received 27 January 1975)

Abstract

It is shown that the accelerated ladder operator method, leads to closed form expressions of the Rosen-Morse and Manning-Rosen rotation vibration dipole moment matrix clements. These closed form formulas, which are valid for any degree t of the dipole moment Taylor's expansion, allows the calculation of the rotation vibration intensities for any $\Omega v J \rightarrow \Omega^{\prime} v^{\prime} J^{\prime}$ transition. Explicit expressions of the rotation vibration energy levels in terms of the quantum numbers and of the specific parameters of each potential are also given.

1. Introduotion

In previous papers, it has been shown how the introduction of multi-step or accelerated ladder operators, within the Sohrödinger Infeld-Hull factorization method (Schrödinger 1940, 1941 ; Infeld \& Hull 1951), enables a straightforward determination of closed form expressions of radial as well as angular matrix elements. Particularly, this method has proved to be very efficient to obtain hydrogenic r^{k} radial off-diagonal matrix elements (Badawi et al 1973; Bessis et al 1973; Hadinger et al 1973) and, also, closed form formulas for the Morse-Pekeris rotation vibration intensities of diatomics (Badawi et al 1973; Badawi et al 1974). In fact, these two problems are closely related. As it has been shown elsewhere (Badawi et al 1972), for several other types of diatomic potential functions, the nuelear radial equation is still factorizable if an adequate expansion technique is used to include the rotation-vibration coupling; moreover the Morse-Pekeris, Rosen-Morse (1932) and Manning-Rosen (1933) potentials can be considered as three particular cases of the same general expression.

In the present paper, the determination of the Rosen-Morse and ManningRosen rotation-vibration intensities is investigated. From a theoretical point of view, the last investigation differs from the previous ones : indeed, since the application of our former prooedure would result in intricate accelerated ladder operators, a new canonical expression of these operators is introduced. This new aspeot of the ladder operator method has been thoroughly considered elsewhere (Hadinger et al 1974). General results of this last reference are largely
used hereafter to obtain closed form formulas for the Rosen-Morse and Manning. Rosen rotation-vibration intensities and, also, the enorgy levels. Such expressions, which to our knowledge have not been yet given, could enable a comparative interpretation of experimental results where using Morse-Pekeris, Rosen-Morse or Manning-Rosen potentials. This last point will be investigated in a forthcoming paper.

2. Theory

Within the Born-Oppenheimer approximation, the expression of the intensity of a line associated with the transition $\Omega v J \rightarrow \Omega^{\prime} v^{\prime} J^{\prime}$ in a rotation-vibration band of a diatomic molecules is well known to be (Herzberg 1950; Landau \& Lifshitz 1971)

$$
I_{\substack{\Omega v J^{\prime} \tag{1}\\
\nabla^{\prime} v^{\prime} J^{\prime}}}=\frac{4 \pi^{2} N_{\Omega v J}\left(2 J^{\prime}+1\right)}{3 \hbar c\left[2-\delta\left(\Omega, \Omega^{\prime}\right)\right]}\left(\begin{array}{ccc}
J & 1 & J^{\prime} \\
-\Omega & \Omega-\Omega^{\prime} & \Omega^{\prime}
\end{array}\right)^{2} \omega_{\substack{\Omega \nu J \\
\Omega^{\prime} v^{\prime} J}}|M|_{\substack{\Omega^{\prime}, v^{\prime} J^{\prime}}}^{2},
$$

where $N_{Q_{v v} J}$ is the number of molecules in the initial state, $\omega_{\Omega_{2}, v^{\prime}, J}$, the vibrational frequency (in om^{-1}), M the dipole moment matrix element, $\mathrm{n}^{\prime} \mathbf{n}^{\prime} J^{\prime} J$ and Ω the iotal angular quantum numbers for the rotational state under consideration (Hund's coupling oase (a)) and $\left(\begin{array}{ccc}J & 1 & J^{\prime} \\ -\Omega & \Omega & \Omega^{\prime} \\ \Omega^{\prime}\end{array}\right)$ a Wigner $3 j$ coefficient (Edmonds 1957)

The expression (1) can be easily extended to n-pole moments, and, of course, for singlet states ($S=0$) is identical with the Höln \& London formulas (Höln \& London 1925).

When a Taylor expansion near the equilibrium distance r_{e} is introduced for the dipole moment i.e.,

$$
\begin{equation*}
M(r)=\sum_{t} \bar{M}_{t}\left(r-r_{e}\right)^{t} \tag{2}
\end{equation*}
$$

the dipole moment matrix element oan be written

$$
\begin{equation*}
M_{\mathbb{Q}_{0^{\prime}, v^{\prime} J},}=c c^{\prime} \sum_{M_{i}} \bar{M}_{i}^{(t)}{ }_{\mathbf{Q}^{2} v^{\prime} v^{\prime} J^{\prime}} \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
M_{\mathbb{Q u}^{(t)} v^{\prime} J^{\prime}}=\int_{0}^{\infty} R_{\Omega v J}(r)\left(r-r_{e}\right)^{t} R_{R^{\prime} v^{\prime} J^{\prime}}(r) r^{2} d r \tag{4}
\end{equation*}
$$

c and c^{\prime} are the normalization constanta of the nuclear radial wavefunctions $R_{\text {Quv }}(r)$. In view of further simplifioations occuring in the calculation, we have not introduced the normalization constants within the matrix element (4).

The nuclear rotation-vibration wavefunctions $R_{\text {QuJ }}(r)$ are solutions of the well known equation

$$
\begin{equation*}
\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d R}{d r}\right)+\left[\frac{\Omega^{2}-J(J+1)}{r^{2}}+\frac{2 \mu}{\hbar^{2}}\left(E-E_{e l}-Q(r)\right)\right] R=0 \tag{5}
\end{equation*}
$$

where $\mu, E, E_{e l}, Q(r)$ are respectively the reduced mass, the total energy, the electronic energy and the potential function. Ω, J and v are the usual quantum numbers oharaoterizing the rotation-vibration state ($\Omega J v$).

When setting $U(r)=r R(r)$, eq. (5) becomes

$$
\begin{equation*}
\frac{d^{2} U}{d r^{2}}+\frac{2 \mu}{\hbar^{2}}\left[W-Q(r)-A_{0}\left(\frac{r_{\theta}}{r}\right)^{2}\right] U=0 \tag{6}
\end{equation*}
$$

where r_{c} is the equilibrium distance of the nuclei and

$$
\begin{align*}
& W=E-E_{e l} \\
& A_{e}=B_{e}\left[J(J+1)-\Omega^{2}\right] \tag{7}\\
& B_{e}=\frac{\hbar^{2}}{2 \mu r_{e}^{2}}
\end{align*}
$$

The Rosen-Morse potential function is

$$
\begin{equation*}
Q(r)=B \tanh (r / d-k)-C \operatorname{sech}^{2}(r / d-k) \tag{8}
\end{equation*}
$$

where k is assumed to be positive (see also Appendix A). The Manning-Rosen potential function is :

$$
\begin{equation*}
Q(r)=\frac{1}{K \rho^{2}} \cdot\left[\frac{\beta(\beta-1) \exp (-2 r / \rho)}{[1-\exp (-r / \rho)]^{2}}-\frac{A \exp (-r / \rho)}{[1-\exp (-r / \rho)]}\right] . \tag{9}
\end{equation*}
$$

In the expressions (8) and (9), the authors's originar symbols B, d, C, k, and K, ρ, A and β are used.

As it has been pointed out elsewhere (Badawi et al 1972), the potential functions (eqs. (8) and (9)), as woll as the Morse-Pokeris potential already investis gated (Badawi et al 1974), are particular cases of the general expression

$$
\begin{equation*}
Q(r)=M\left(\frac{\exp (-\gamma r)}{1+\tau \exp \left(-\gamma r^{\prime}\right)}\right)^{2}+N\left(\frac{\exp (-\gamma r)}{1+\tau \exp (-\gamma r)}\right)+L . \tag{10}
\end{equation*}
$$

For the Rosen-Morse potential

$$
\begin{align*}
\tau & =\operatorname{oxp}(2 k), \\
\gamma & =2 / d, \\
M & =4 C \exp (4 k), \\
N & =-(2 B+4 C) \exp (2 l), \tag{11}\\
L & =B
\end{align*}
$$

For the Manning-Rosen potential

$$
\tau=-1
$$

$$
\begin{align*}
& \gamma=\frac{1}{\rho} \\
& M=\frac{\beta(\beta-1)}{K \rho^{2}}, \tag{12}\\
& N=-\frac{A}{K \rho^{2}}, \\
& L=0 .
\end{align*}
$$

Eq. (6) is factorizable if an adequate expansion techniquo is used to include the rotation-vibration coupling term $A_{0}\left(r_{\mathrm{e}} / r\right)^{2}$ i.e., by equating this term to an expression homogeneous to eq. (10)

$$
\begin{equation*}
\left(\frac{r_{e}}{r}\right)^{2}=C_{2}\left(\frac{\exp (-\gamma r)}{1+\tau \exp (-\gamma r)}\right)^{2}+C_{1}\left(\frac{\exp (-\gamma r)}{1+\tau \exp (-\gamma r)}\right)+C_{0} \tag{13}
\end{equation*}
$$

where the C_{i} are functions of the specific parameters τ and γ of each potential (Badawi et al 1972).

$$
\begin{align*}
& C_{0}=\left\{1-\frac{4}{\gamma r_{e}}\left(1+\tau \exp \left(-\gamma r_{\mathrm{e}}\right)\right)+\left(\frac{3}{\gamma^{2} r_{e}}+\frac{1}{\gamma r_{e}}\right)(1+\tau \exp (-\gamma r))^{2}\right\}, \\
& C_{1}=\frac{1}{\tau} 2 \exp \left(\gamma r_{e}\right)\left\{\frac{3}{\gamma r_{e}}\left(1+\tau \exp \left(-\gamma r_{\mathrm{e}}\right)\right)^{2}-\left(\frac{3}{\gamma^{2} r_{e}^{2}}+\frac{1}{\gamma r_{e}}\right)\left(1+\tau \exp \left(-\gamma r_{\mathrm{e}}\right)\right)^{3}\right\}, \\
& C_{2}=\frac{1}{\tau^{2}} \exp \left(2 \gamma r_{e}\right)\left\{-\frac{2}{\gamma r_{e}}\left(1+\tau \exp \left(-\gamma r_{0}\right)\right)^{3}+\left(\frac{3}{\gamma^{2} r_{e}^{2}}+\frac{1}{\gamma r_{e}}\right)\left(1+\tau \exp \left(-\gamma r_{\mathrm{e}}\right)\right)^{4}\right\} . \tag{14}
\end{align*}
$$

Then, the nuclear rotation-vibration eq. (6) becomes

$$
\begin{gather*}
\left\{\frac{d^{2}}{d r^{2}}-\frac{2 \mu}{\hbar^{2}}\left[\left(M+A_{e} C_{2}\right)\left(\frac{\exp (-\gamma r)}{1+\tau \exp (-\gamma r)}\right)^{2}+\left(N+A_{e} C_{1}\right)\left(\frac{\exp (-\gamma r)}{1+\tau \exp (-\gamma r)}\right)\right.\right. \\
\left.\left.+\left(L+A_{e} C_{0}\right)-W\right]\right\} \mathrm{U}(r)=0 \tag{15}
\end{gather*}
$$

When setting

$$
\begin{equation*}
x=\frac{\gamma r}{2}-\frac{1}{2} \ln |\tau| \tag{16}
\end{equation*}
$$

and expressing exp $(-\gamma r)$ in terms of trigonometric functions, it is easily shown that the eq. (15) can be written.

$$
\begin{equation*}
\left\{\frac{d^{2}}{d x^{2}}-\frac{S(S+1)}{\left[\frac{1}{a} \sin a(x+p)\right]^{2}}-2 a q \cot a(x+p)+\lambda\right\} U(x)=0 \tag{17}
\end{equation*}
$$

with

$$
\begin{align*}
& a=i, \\
& p=i \frac{\pi}{4}(1+\varepsilon), \\
& S=\frac{\hbar}{2}\left[1+\frac{8 \mu}{\hbar^{2} \gamma^{2}}\left(\frac{M}{\tau^{2}}+A_{e} C_{2}\right)\right]^{i}-1 / 2, \\
& q=-\frac{2 \mu}{\hbar^{2} \gamma^{2}}\left[\frac{M}{\tau^{2}}+\frac{N}{\tau}+A_{e}\left(C_{1}+C_{2}\right)\right], \tag{18}\\
& \lambda=2 q+\frac{8 \mu}{\hbar^{2} \gamma^{2}}\left(W-L-C_{0}\right),
\end{align*}
$$

$\varepsilon=+1$, for the Rosen-Morse potential,
$\epsilon=-1$, for the Manning-Rosen potential.
Eq. (17) appears to be a Infeld-Hull's type \boldsymbol{E} factorizable equation already investigated in a previous paper (Hadinger et al 1974). Within the Infeld-Hull's factorization scheme, the factorizable eq. (17) can be replaced by each of the two following differential equations

$$
\begin{align*}
& H_{S^{+}} H_{S^{-}} U_{S^{m}}=[\lambda-L(S)] U_{S^{m}} \\
& H^{-}{ }_{S+1} H^{+}{ }_{S+1} U_{S^{m}}=[\lambda-L(S+1)] U_{S^{m}}, \tag{19}
\end{align*}
$$

where S and m are quantum numbers characterizing the state under consideration and $L(S)$ is a function independent of x. For a type E factorizable case.

$$
\begin{equation*}
L(S)=a^{2} S^{2}-q^{2} / S^{2} \tag{20}
\end{equation*}
$$

The one step up/down ladder operators are

$$
\begin{equation*}
H_{S^{ \pm}}=S a \cot a(x+p)+\frac{q}{S} \mp \frac{d}{d x} . \tag{21}
\end{equation*}
$$

The neoessary condition for the existence of quadratioally integrable solutions is

$$
\begin{equation*}
|m-S|=v=\text { integer } \tag{22}
\end{equation*}
$$

Each eigenfunction $U_{S^{m}}(S=m \pm v)$ of the whole disorete spectrum is completely characterized by the integer value of v which fixes its rank starting from the key function $U_{S}{ }^{S}(v=0)$.
From accelerated ladder operator considerations, it has been shown that a general oxpression of $U_{S^{m}}(x)$ is ${ }^{\text {(1) }}$

$$
\begin{equation*}
U_{S^{m}}(x)=U_{S^{m}}(x)[\sin a(x+p)]^{v} P_{v}\left(\alpha_{1}-v, \alpha_{2}-v\right)[\operatorname{coth} i a(x+p)], \tag{23}
\end{equation*}
$$

[^0]where $P_{v}{ }^{\left(\alpha_{1}-v, \alpha_{2}-v\right)}$ is a Jacobi polynomial whose parameters α_{1} and α_{2} will be specified further for each of the two potentials under consideration.
The key function $(v=0)$ is
\[

$$
\begin{equation*}
U_{S^{S}}(x)=[\sin a(x+p)]^{-\left(\frac{\alpha_{1}+\alpha_{2}}{2}\right)} \exp \left[-i\left(\frac{\alpha_{1}-\alpha_{2}}{2}\right) a(x+p)\right] . \tag{24}
\end{equation*}
$$

\]

Hence, the Rosen-Morse wavefunctions as well as the Manning-Rosen wavefunctions can be derived from these general rosults. At this stage it is better to consider each case separately.

3, Rosen-Morsir Rotation-Vibration Intensities

The specific parameters of the Rosen-Morse potential are assumed to verify the Varshni's (1957) conditions which will be given at the end of the present section. Nevertheless the mathematical treatment is independant of these conditions.

A. Wave functions

When specifying in (23) the parameters a and p (with $\varepsilon=+1$) [see eq. (18)] ono obtains the expression of the Rosen-Morse $U_{S^{m}}$ function ${ }^{(1)}$

$$
\begin{equation*}
U_{S^{m}}(x)=U_{S^{S}}(x)[\operatorname{ch}(x)]^{v} P_{v}{ }^{\left(\alpha_{1}-v, \alpha_{2}-v\right)}(-\operatorname{th} x) \tag{25}
\end{equation*}
$$

with the following expression of the key function

$$
\begin{equation*}
\left.U_{S^{S}}(x)=[\operatorname{ch}(x)]\right]^{-\left(\frac{\alpha_{1}+\alpha_{2}}{2}\right)} \exp \left[\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right) x\right] \tag{26}
\end{equation*}
$$

and [see eq. (16)]

$$
\begin{equation*}
x=\frac{r}{d}-k ; \quad(-k \leqslant x \leqslant+\infty) . \tag{27}
\end{equation*}
$$

The eigenfunction $U_{S^{m}}$ must satisfy the boundary conditions

$$
\begin{equation*}
U_{S} m(-k)=U_{S} m(+\infty)=0 \tag{28}
\end{equation*}
$$

lt is sufficient, and of course necessary, that these conditions be fulfilled by the key function $U_{S} s$ (Infeld \& Hull 1951).

In fact, as for the Morse-Pekaris functions (ter Haar 1946), it oan be shown (see Appendix A) that, when the Rosen-Morse parameter k is large enough, the boundary conditions (28) can be replaced, to a fair approximation, by the following ones

$$
\begin{equation*}
U_{S^{m}} m(-\infty)=U_{S^{m}}(+\infty)=0 \tag{29}
\end{equation*}
$$

Then, the eigenfunctions satisfying the conditions (29) turn to be, within the factorization soheme, class II ($v=S-m$) solution of eq. (17),

Finally, when specifying in (25) the values of the parameters α_{1} and α_{2} of the Jacobi polynomial, one obtdins the closed form expression, of the Rosen-Morse rotation-vibration wave function ${ }^{(1)}$

$$
\begin{gather*}
R_{\Omega v J}(r)=\frac{1}{r}\left[\operatorname{ch}\left(\frac{r}{d}-k\right)\right]^{-m} \exp \left[-\frac{q}{m}\left(\frac{r}{d}-k\right)\right] P_{v}\left(m-\frac{q}{m}, m+\frac{q}{m}\right) \\
{\left[-\operatorname{th}\left(\frac{r}{d}-k\right)\right],} \tag{30}
\end{gather*}
$$

where from eqs. (18) and (11)

$$
\begin{align*}
& m=\dot{S}-v=\frac{1}{2}\left[1+\frac{2 \mu}{\hbar^{2}} d^{2}\left(4 C+A_{e} C_{2}\right)\right]^{\ddagger}-\left(v+\frac{1}{2}\right) \tag{31}\\
& q=-\frac{\mu}{2 \hbar^{2}} d^{2}\left[-2 B+A_{\ell}\left(C_{1}+C_{2}\right)\right]
\end{align*}
$$

provided that $m^{4}>q^{2}$ (class II eigenfunctions).

B. Energy levels

The eigenvalue λ in eq. (17) is $\lambda_{m}=L(m)$. From the exprossion (20) with $a=i$, one gets:

$$
\begin{equation*}
\lambda_{m}=-m^{2}-q^{2} / m^{2} \tag{32}
\end{equation*}
$$

By equating the expressions (32) and (18) of λ, and taking into account the quantification condition $v=S-m$ one obtains the energy levels expressed in terms of the quantum numbers v, J and Ω, and of the potential parameters

$$
\begin{gather*}
E=E_{e l}-\frac{\hbar^{2}}{8 \mu d^{2}}-C+A_{e}\left(C_{0}+\frac{1}{2} C_{1}+\frac{1}{4} C_{2}\right)-\frac{\hbar^{2}}{2 \mu d^{2}}\left(v+\frac{1}{2}\right)^{2} \\
 \tag{33}\\
+\frac{\hbar^{2}}{2 \mu d^{2}}\left(v+\frac{1}{2}\right) S_{J}-\frac{\mu d^{2}}{2 \hbar^{2}}\left[\frac{A_{e}\left(C_{1}+C_{2}\right)-2 B}{2\left(v+\frac{1}{2}\right)-S_{J}}\right]^{2}
\end{gather*}
$$

where C_{0}, C_{1}, C_{2} are given by (14) and

$$
\begin{gather*}
S_{J}=\left[1+\frac{2 \mu}{h^{2}} d^{2}\left(4 C+A_{e} C_{2}\right)\right]^{\frac{1}{2}} \\
A_{e}=B_{e}\left[J(J+1)-\Omega^{2}\right] \tag{34}
\end{gather*}
$$

The expressions (11) have been used to express the coefficients M, N and L. of $Q(r)$ (eq. (10)) in terms of the Rosen-Morse parameters.

C. Dipole moment matrix elements

The current matrix element [eq.(4)] to be calculated can be rewritten

$$
\begin{equation*}
M_{\substack{(t) \\ Q_{0}^{\prime} p^{\prime}, J^{\prime}}}\left(s, s^{\prime}\right)=\int_{-\infty}^{+\infty} U_{S^{\prime}} m^{*}(x)\left(x d+k-r_{e}\right)^{t} \cdot U_{S^{\prime}}^{\prime m^{\prime}}(x) d x, \tag{35}
\end{equation*}
$$

where the integration bounds $(-k,+\infty)$ have boen replaced by $(-\infty,+\infty)$. This can be justified to a fair approximation provided that k is large enough (seo Appendix A). This condition is compatible with the Varshni's conditions.

When introducing the olassical expression of the Jacobi polynomial (Gradshteyn \& Ryzhik 1965), ond obtains an alternative expression of the Rosen-Morse function (25)

$$
\begin{equation*}
U_{S^{m}}(x) \simeq \sum_{j m 0}^{v} A_{j}(\operatorname{ch} x)^{-m-j} \exp \left[\left(-\frac{q}{m}+j\right) x\right] \tag{36}
\end{equation*}
$$

where ${ }^{(2)}$

$$
\begin{equation*}
A_{j}=\left(^{v}\right) \frac{\Gamma(S+m+j+1)}{2 \Gamma(m-q / m+j+1)} \tag{37}
\end{equation*}
$$

Hence, ono obtains ${ }^{(3)}$.
whero

$$
\begin{equation*}
J_{n}(t)=\int_{-\infty}^{+\infty}(\operatorname{ch} x)^{-m-m^{\prime}-j-l} \exp \left[\left(-\frac{q}{m}-\frac{q^{\prime}}{m^{\prime}}+j+l\right) x\right]\left(x d+k-r_{e}\right)^{t} d x . \quad \ldots \tag{39}
\end{equation*}
$$

For $t=0$, the determination of the intogral (39) is straight forward and, from tables (Gradahteyn \& Ryzhik 1965), one gets:

$$
\begin{equation*}
J_{j l}^{(0)}=2^{m+m^{\prime}+1+l-1} \frac{\Gamma\left(\frac{m+-m^{\prime}}{2}-\frac{q}{2 m}-\frac{q^{\prime}}{2 m^{\prime}}+j+l\right) \Gamma\left(\frac{m+m^{\prime}}{2}+\frac{q}{2 m}+\frac{q^{\prime}}{2 m^{\prime}}\right)}{\Gamma\left(m+m^{\prime}+j+l\right)} \tag{40}
\end{equation*}
$$

It should be noted that the normalization constant c of the wavefunction is

$$
\boldsymbol{c}=\left[\boldsymbol{M}_{\frac{\Omega(0)}{(0)} \tilde{\Omega}^{\prime} \dot{v}^{\prime} J^{\prime}}\left(s, s^{\prime}\right)\right]^{-\mathbf{l}}
$$

Hence, from eq. (40), one gets

$$
\begin{equation*}
c=\left\{\sum_{j=0}^{v} \sum_{l=0}^{v} \boldsymbol{A}_{j} \boldsymbol{A}_{l} \frac{2^{2 m+j+l-1} \Gamma(m-q / m+j+l) \Gamma(m+q / m)}{\Gamma(2 m+j+l)}\right\}^{-1} \tag{41}
\end{equation*}
$$

For $t \neq 0$, the $\mathcal{J}_{f 1}{ }^{(0)}$ integral [eq (39)] is obtainable by use of formal derivation (see Appendix B)

$$
\begin{equation*}
\mathcal{J}_{j l}{ }^{(t)}=\sum_{s=0}^{t-1}\binom{t-1}{s} \mathcal{J}_{j l}(t-1-s)\left(\frac{\partial}{\partial \sigma}\right)^{d}\left[g(\sigma) d^{s+1}+k-r_{e}\right] \tag{42}
\end{equation*}
$$

[^1]${ }^{(3)}$ Primed notation correaponds to quantum numbers S^{\prime}, m^{\prime} and v^{\prime}.
where
\[

$$
\begin{gather*}
\sigma=-q / m-q^{\prime} / m^{\prime}+j+l \\
g(\sigma)=\frac{1}{2}\left[\psi\left(\frac{\sigma}{2}+\frac{m+m^{\prime}+j+l}{2}\right)-\psi\left(-\frac{\sigma}{2}+\frac{m+m^{\prime}+j+l}{2}\right)\right] \quad \ldots \tag{43}\\
\left(\frac{\partial}{\partial \sigma}\right)^{\delta} g(\sigma)=\left(\frac{1}{2}\right)^{(\theta+1)}\left\{\psi^{(\theta)}\left(\frac{\sigma}{2}+\frac{m+m^{\prime}+j+l}{2}\right)+(-)^{(\sigma+1)} \psi^{(\theta)}\left(-\frac{\sigma}{2}+\frac{m+m^{\prime}+j \dot{+} l}{2}\right)\right.
\end{gather*}
$$
\]

ψ is the Euler function and $\psi^{(\theta)}$ stands for the s-th derivative with respect to σ which can be obtainod by the following relationships.

$$
\begin{align*}
& \psi(z)=-\frac{1}{z}-C-\sum_{n=1}^{\infty}\left(\frac{1}{z+n}-\frac{1}{n}\right) \\
& \psi^{(\theta)}(z)=(-)^{s+1_{s}} \sum_{n=0} \frac{1}{(z+n)^{s+1}} \tag{44}
\end{align*}
$$

where $C=-0.577215665$ is the Euler-Mascheroni constant. Fot large values of z, asymptotic expansions of these functions are available elselwhere (see for instance Badawi et al 1974).

D. Rosen-Morse potential parameters

Following Varshni (1957), the necessary conditions to be fulfilled by the potential energy curvo are

1. This curve should have at least a minimum lgcated at $r=r_{\mathrm{c}}$ i.e., the potential parametors must verify
and

$$
-1 \leqslant \frac{B}{2 C} \leqslant 1
$$

$$
\begin{array}{ll}
k d>r_{\mathrm{e}} & \text { if } B>0 \\
k d<r_{\mathrm{e}} & \text { if } B<0
\end{array}
$$

As pointed out before, k is chosen positive although it is not a necessary condition to be fulfilled by the potential energy curve (see Appendix A).
2. This curve should come asymptotically to a finite value as $r \rightarrow+\infty$ i.e. the potential paramoters must verify

$$
\frac{1}{4 C}(B+2 C)^{2}=D_{e}=Q(+\infty)-Q\left(\overline{r_{e}}\right)
$$

4. Manning-Rosen Rotation-Vibration Inteningitits

The treatment of the Manning-Rosen potential is analogous to that of the Rosen-Morse potential,

A. Wave functions

From eqs. (18), (12) and (23), one obtains the expression of the Manning. Rosen $\boldsymbol{O}_{S^{m}}$ function

$$
\begin{equation*}
U_{S^{m}}(x)=U_{S^{S}}(x) \cdot(\operatorname{sh} x)^{v} P_{v}{ }^{\left(\alpha_{1}-v, \alpha_{2}-v\right)}(-\operatorname{coth} x) \tag{45}
\end{equation*}
$$

with the following expression of the key function

$$
\begin{equation*}
U_{S^{S}}(x)=(\operatorname{sh} x)-\left(\frac{\alpha_{1}+\alpha_{2}}{2}\right) \exp \left[\frac{1}{2}\left(\alpha_{1}-\alpha_{2}\right) x\right] . \tag{46}
\end{equation*}
$$

and [see eq. (16)]

$$
\begin{equation*}
x=\frac{r}{2 \rho} ;(0 \leqslant x \leqslant+\infty) \tag{47}
\end{equation*}
$$

Within the factorization scheme, the class $\mathrm{I}(v=m-S)$ solutions of eq. (17) will satisfy the necessary boundary conditions

$$
\begin{equation*}
U_{S^{m}}(0)=U_{S^{m}}(+\infty)=0 \tag{48}
\end{equation*}
$$

Hence, one obtains the olosed form expression of the Manning-Rosen rotation vibration-wavefunotion (1)

$$
\begin{align*}
& R_{00 J}(r)=\frac{1}{r}\left[\operatorname{sh}\left(\frac{r}{2 \rho}\right)\right]^{m+1} \exp \left[\frac{q r}{2 \rho(m+1)}\right] \\
& P_{\nu}\left(-m-1+\frac{q}{m+1},-m-1-\frac{q}{m+1}\right)\left(-\operatorname{coth} \frac{r}{2 \rho}\right), \tag{49}
\end{align*}
$$

where from eqs. (18) and (12)

$$
\begin{align*}
m+1 & =S+v+1=\left(v+\frac{1}{2}\right)+\frac{1}{2}\left[1+\frac{8 \mu \rho^{2}}{\hbar^{2}}\left(\frac{\beta(\beta-1)}{K \rho^{2}}+A_{e} C_{2}\right)\right]^{t} \\
q & =-\frac{2 \mu \rho^{2}}{\hbar^{2}} ;\left[\frac{\beta(\beta-1)}{K \rho^{2}}+\frac{A}{K \rho^{2}}+A_{e}\left(C_{1}+C_{2}\right)\right] \tag{50}
\end{align*}
$$

provided that $q<0$ and $(m+1)^{2}<-q$; (Class I eigenfunctions)

B. Energy levels

The eigenvalue λ in the eq. (17) is $\lambda_{m}=L(m+1)$. From the expression (20) with $a=i$, one gets

$$
\begin{equation*}
\lambda_{m}=-(m+1)^{2}-q^{2} /(m+1)^{2} . \tag{5i}
\end{equation*}
$$

Then, by equating the expressions (51) and (18) of λ and taking into aocount the quantification condition $v=m$-'S, one obtains the energy levels in terms of the quantum numbers v, J, and Ω and of the potential parameters.

$$
\begin{align*}
E= & E_{e l}-\frac{\hbar^{2}}{32 \mu \rho^{2}}+\frac{1}{4 K \rho^{2}}[\beta(\beta-1)+2 A]+A_{e}\left[C_{0}+\frac{1}{2} C_{1}+1 / 4 C_{2}\right]- \\
& -\frac{\hbar^{2}}{8 \mu \rho^{2}}\left(v+\frac{1}{2}\right)^{2}-\frac{\hbar^{2}}{8 \mu \rho^{2}}\left(v+\frac{1}{2}\right) \mathcal{S}_{J} \tag{52}\\
& -\frac{2 \mu \rho^{2}}{\hbar^{2}}\left[\frac{A_{e}\left(C_{1}+C_{2}\right)+[\beta(\beta-1)+A] / K \rho^{2}}{2\left(v+\frac{1}{2}\right)+\mathscr{S}_{J}}\right]^{2},
\end{align*}
$$

where $C_{0} . C_{1}, C_{2}$ are given by (14) and

$$
\begin{align*}
\mathcal{S}_{J} & =\left\{1+\frac{8 \mu \rho^{2}}{\hbar^{2}}\left[\frac{\beta(\beta-1)}{K \rho^{2}}+A_{e} C_{2}\right]\right\}^{1} \\
A_{e} & =B_{e}\left[J(J+1)-\Omega^{2}\right] \tag{53}
\end{align*}
$$

C. Dipole moment matrix element

The current matrix element eq. (4) to be calculated is
whore the $U_{S^{m}}$ and $U_{S^{\prime}}{ }^{\prime \prime}$ functions are given by eqs. (45) and (46).
An alternative expression of the Manning-Rosen $U^{m} S$ function is

$$
\begin{equation*}
U^{m} S \simeq \sum_{j=0}^{v} A_{j}(\operatorname{sh} x)^{m+1-j} \exp \left[\left(\frac{q}{m+1}+j\right) x\right] \tag{55}
\end{equation*}
$$

where ${ }^{(2)}$

$$
\begin{equation*}
A_{j}=(-)^{j}\binom{v}{j} \frac{\Gamma(-m-S-1+j)}{2^{j} \Gamma\left(-m+\frac{q}{m+1}+j\right)} \tag{56}
\end{equation*}
$$

Hence, one obtains ${ }^{(3)}$

$$
\begin{equation*}
M_{\substack{(t) \\ v_{0}^{\prime} v^{\prime} J^{\prime}}}\left(S, S^{\prime}\right)=\sum_{j=0}^{v} \sum_{l=0}^{v^{\prime}} A_{j} A_{l}^{\prime} J_{l^{(t)}}, \tag{57}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{j l}^{(t)}=\int_{0}^{\infty}(\operatorname{sh} x)^{2+m+m^{\prime}-j-l} \exp \left[\left(\frac{q}{m+1}+\frac{q^{\prime}}{m^{\prime}+1}+j+l\right) x\right]\left(2 \rho x-r_{e}\right)^{t} d x . \ldots \tag{58}
\end{equation*}
$$

For $t=0$, one gets (Gradshteyn \& Ryzhil 1965)
$J_{j l^{(0)}}=2^{j+l-9-m-m^{\prime}} \frac{\Gamma\left(-\frac{m+m^{\prime}}{2}-\frac{q}{2(m+1)}-\frac{q^{\prime}}{2\left(m^{\prime}+1\right)}-1\right) \Gamma\left(m+m^{\prime}+3-j-l\right)}{\Gamma\left(\frac{m+m^{\prime}}{2}-\frac{q}{2(m+1)}-\frac{q^{\prime}}{2\left(m^{\prime}+1\right)}+2-j-l\right) \ldots \quad(59)}$
and, consequently, the following expression of the normalization constant of the wavefunction.

$$
\begin{equation*}
c=\left\{\sum_{j=0}^{v} \sum_{l=0}^{v} A_{j} A_{l} \frac{2^{j+l-8-2 m} \Gamma\left(-m-\frac{q}{(m+1)^{-1}}\right) \Gamma(2 m+3-j-l)}{\Gamma\left(m-\frac{q}{(m+1)}+2-j-l\right)}\right\}^{-1 / 2} . \tag{60}
\end{equation*}
$$

For $t \neq 0$, the $\mathcal{J f t}^{(t)}$ integral [eq (58)] is obtainable by use of formal derivation (see Appendix B).

$$
\begin{equation*}
\mathcal{J}_{n^{(t)}}=\sum_{t=0}^{t-1}\binom{t-1}{s} \mathcal{J}_{n^{(t-1-s)}}\left(\frac{\partial}{\partial \sigma}\right)^{s}\left[\mathcal{J}(\sigma)(2 \rho)^{s+1}-r_{e}\right], \tag{81}
\end{equation*}
$$

where

$$
\begin{gather*}
\sigma=q /(m+1)+q^{\prime} /\left(m^{\prime}+1\right)+j+l \\
g(\sigma)=\frac{1}{2}\left\{\psi\left(-\frac{\sigma}{2}+2+\frac{m+m^{\prime}-j-l}{2}\right)-\psi^{(0)}\left(-\frac{\sigma}{2}-1-\frac{m+m^{\prime}-j-l}{2}\right)\right\} \tag{62}\\
\left(\frac{\partial}{\partial \sigma}\right)^{d} g(\sigma)=\frac{1}{2}(S+1)(-)^{\bullet}\left\{\psi^{(\theta)}\left(-\frac{\sigma}{2}+2+\frac{m+m^{\prime}-j-l}{2}\right)\right. \\
\left.-\psi^{(\theta)}\left(-\frac{\sigma}{2}-1-\frac{m+m^{\prime}-j-l}{2}\right)\right\}
\end{gather*}
$$

is the Euler ψ function and $\psi^{(0)}$ stands for the s-th derivative with respect to σ (see eq. (44)).
D. Manning-Rosen potential parameters.

1. For the existence of a minimum of the potential energy curve at $r=r_{e}$, the necessary condition to be fulfilled by the potential parameters is

$$
A=2 \beta(\beta-1)\left[\exp \left(r_{e} / \rho\right)-1\right]^{-1}
$$

2. The potential curve should come asymptotically to a finite value as $r \rightarrow+\infty$ i.e., the potential parameters must verify

$$
\frac{A^{2}}{4 K \rho^{2} \beta(\beta-1)}=D_{e}=Q(\infty)-Q\left(r_{e}\right) .
$$

with $K>0$ and $\rho>0$.

5. Conclusion

Finally, our ladder operator procedure enables the determination of closed form exprossions of the Rosen-Morse and Manning-Rosen dipole moment matrix elements of a diatomic molecule, which is valid for any degree t of the dipole moment Taylor's expansion, hence, the calculation of the rotation-vibration intensities for any transition $\Omega v J \rightarrow \Omega^{\prime} v^{\prime} J^{\prime}$. Of course, from a physical point of view, the limitations of the usefulnoss come from the knowledge of reliable Taylor coefficients \bar{M}_{t} [eq. (2)] and also from the availability of good parameters for these potentials which are likely to be more flexible than the Morse-Pekeris potential. Explicit expressions of the rotation-vibration energy levels in terms of the quantum numbers $\Omega v J$ and the potential parameters have been given. Sinco such formulas have been previously obtained for the Morse-Pekeris potential (Herman \& Rubin 1955; Badawi et al 1974), it is now possiblo, and should be interesting, to study the comparative merits of the three potontials. It should be noted that the calculation of the Morse-Pekeris, Roson-Morse and Manning-Roson potentials rotation-vibration dipole moment is also possible by use of four terms recursion formulas (Badawi 1973); nevertheless, from a computational point of view, the use of the olosed form expression is, by far, more advantageous.

Appendix A

Extension of the Boundary Conditions for the Rosen-Morse Wave Functions •

I. Wave functions

As pointed .out in Section (3A), the Rosen-Morse function $U_{S^{m}}$ must satisfy the boundary conditions

$$
\begin{equation*}
U_{S^{m}}(-k)=U_{S^{m}}(+\infty)=0 \tag{Al}
\end{equation*}
$$

Our purpose is to show that, to a fair approximation, these conditions can be replaced by the following ones

$$
\begin{equation*}
U_{S^{m}}(-\infty)=U_{S^{m}}(+\infty)=0 \tag{A2}
\end{equation*}
$$

Since the application of the ledder operators preserves the boundary conditions (Infeld \& Hull 1951), it is nocessary and sufficient that the approximative equivalence of condition (A1) and (A2) be fulfilled by the key function $U_{S}{ }^{S}$.

$$
\begin{equation*}
U_{S}^{S}(x)=[\operatorname{ch} x]^{-S} \exp (-q x / m)- \tag{A3}
\end{equation*}
$$

with $S^{4} \geqslant m^{4}>q^{2}$.
We noed to demonstrate that it is possible to choose $k>0$ in order to arbitrarily lessen the ratio $U_{S}{ }^{S}(-k) / U_{S} S^{S}\left(x_{0}\right), U\left(x_{0}\right)$ being the maximum value of the
function. Sinoe $U_{S^{S}}\left(x_{0}\right) \geqslant U_{S}{ }^{s}(0)=1$, it is sufficient to prove that, by a suitable choice of k, one can get $U_{S}{ }^{S}(-k)<\epsilon U_{S^{S}}(0)$; ϵ being arbitrary small i.e.;

$$
(\operatorname{ch} k)^{-S} \exp (q k / m)<\epsilon
$$

After a few manipulations, one obtains the required condition

$$
k>\ln \frac{1}{\epsilon}
$$

IT. Dipole moment matrix element

Correspondingly, when calculating the current dipole matrix element (eq. (35)), one can replace tho integration bounds $(-k,+\infty)$ by $(-\infty,+\infty)$ From eq. (38), since the $\boldsymbol{A}_{\mathrm{J}}$ coefficients do not dopend on k, and from the recurrence formulas (42), it is easily seen that it is sufficient to prove the validity of the extension of the intogration bounds for $\mathcal{J g}^{(0)}$ i.e., that, by a suitable choice of k, one can get

$$
\int_{-\infty}^{-k}(\operatorname{ch} x)^{-2 S} \exp (-2 q x / m) d x<\epsilon, \epsilon \text { arbitrary small. }
$$

One obtains, in terms of tho incomplete-Beta function, or the hypergeomeuric function (Gradshteyn \& Ryzhik 1965)

$$
\begin{aligned}
& { }^{B}\left(\frac{1}{1+e^{k}}\right) \\
& \left.\quad-\frac{F^{\prime}(S-q / m, 1-S-q / m ; S+q / m)}{(S-q / m)\left(1+e^{k}\right) S^{-q} / m} ;\left(1+e^{k}\right)^{-1}\right) \\
& \quad<e
\end{aligned}
$$

For k large enough, one can retain only the first term of the hypergeometric serie and obtain the required condition

$$
k>\ln 1 / \varepsilon
$$

From analogous considerations, such an extension of the bounds is usually made for the Morse potential. It has been justifiod for the wavefunction by Ter Haar (1946).

Apprndix B

Recurrence formulas for the Rosen-Morse and Manning Rosen Jil $^{\left({ }^{(t)}\right.}$ integral
The Roson-Morse $\zeta_{j l}{ }^{(t)}$ integral is (eq. (39))

$$
\begin{equation*}
J_{n^{t}}^{(t)}=d^{t^{+}} \int_{-\infty}^{\infty}(\operatorname{coh} x)^{-m-m^{\prime}-j-l} \exp [\sigma x](x+b)^{t} d x \tag{B1}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma=-q / m-q^{\prime} / m^{\prime}+j+l \\
& b=\left(k-r_{e}\right) / d . \tag{B2}
\end{align*}
$$

By formal derivation with respect to the σ parameter it is easy to find the following relationships

$$
\begin{gather*}
J^{(t+1)}(\sigma)=a\left(\frac{\partial}{\partial \sigma}+b\right) J^{(t)}(\sigma) \tag{B3a}\\
\frac{\partial}{\partial \sigma}\left[\mathcal{J}_{(\sigma)^{(0)}}\right]=g(\sigma) \mathcal{J}^{(0)}(\sigma), \tag{B3b}
\end{gather*}
$$

where $g(\sigma)$ is defined by the expression (43).
The Manning-Rosen $\mathcal{J g l}^{(t)}$ integral is (eq (58))

$$
\begin{equation*}
\mathcal{J}_{l^{(t)}}^{(t)}=(2 \rho)^{)^{t}} \int_{0}^{+\infty}(\operatorname{sh} x)^{m+m^{\prime}+\bar{u}-j-l} \exp [\sigma x](x+b)^{t} d x \tag{B4}
\end{equation*}
$$

where

$$
\left.\begin{aligned}
\sigma & =q /(m+1)+q^{\prime} /\left(m^{\prime}+1\right)+j+l \\
b & =-\frac{r_{e}}{2 \rho}
\end{aligned} \right\rvert\, \quad \text {... B5) }
$$

By formal derivation with respoct to the σ parameter it is dasy to find the following relationships

$$
\begin{align*}
\mathcal{J}^{(t+1)}(\sigma) & =2 \rho\left(\frac{\partial}{\partial \sigma}+-b\right) \mathcal{J}^{(t)}(\sigma \tag{B6a}\\
\frac{\partial}{\partial \sigma}\left[\mathcal{J}^{(0)}(\sigma)\right] & =g(\sigma) \mathcal{J}^{(0)}(\sigma) \tag{B6b}
\end{align*}
$$

where $g(\sigma)$ is given by the expression (62)
Consequently, both Rosen-Morse and Manning \hbar Rosen integrals verify the same function relationships (see eq (B3) and (B6).

From (B3a), $\left(\frac{\partial}{\partial \sigma}+b\right)$ can be considered as a one-step up ladder operator, Consequently,

$$
\begin{equation*}
\mathcal{J}^{(t)}(\sigma)=d^{t}\left[\frac{\partial}{\partial \sigma}+b\right]^{t} \mathcal{F}^{(0)}(\sigma) . \tag{B7}
\end{equation*}
$$

On the other hand, from (B3, b) and (B7)

$$
\frac{\partial}{\partial \sigma^{\prime}}\left[\mathcal{J}^{(t)}(\sigma)\right]=d^{t}\left(\frac{\partial}{\partial \sigma}+b\right)^{s}\left[g(\sigma) \mathcal{J}^{(0)}(\sigma)\right] .
$$

Hence, using Leibnitz's rule, one obtains

$$
\mathcal{F}^{(\phi+1)}(\sigma)=\sum_{t=0}^{t}\binom{t}{f}\left(\begin{array}{c}
\frac{\partial}{\partial \sigma}
\end{array}\right)^{n}\left[\rho(\sigma) d^{\theta+1}+b d\right] .
$$

This formula holds both for the Rosen-Morse and the Manning-Rosen inteFor the Rosen-Morse oase, b and σ are given by (B2) and $g(\sigma)$ is defined by eq. (43). For the Manning-Rosen case, b and σ are given by (B5), $g(\sigma)$ by (62), and d has to be replaced by 2ρ.

Refrimenoes

Badawı M., Bessis N. \& Bessis G. 1972 J. Phys. B : Atom. Mol Phys. 5, L 157.
Badawi M., Bessas N, Bessis G. \& Hadinger G. 1973 Phys, Rev A8, 727.
Badawı M., Bessis N. \& Bessis G. 1973 Oan. J. Phys. 51, 2075.
Badawi M. 1973 These de Doctorat de 3e Cycle (Lyon) (unpublished)
Badawi M, Bessis N., Bessis G. \& Hadinger G. 1974 Oan. Phys. 52, 110.
Bessus N., Bessis G. \& Hadinger G. 1973 Phys Rev. A8, 2246.
Edmonds A. R. 1957 Angular momentum in quantum mechanics (Princeton Univorsity llress, Princeton).
Gradshtoyn I. S. \& Ryzhik I. M. 1965 Tables of Integrals, Scries and Products (Acadomic Pross, New York and London).
Hadınger G., Bessis N. \& Bessis G. 1973 Phys. Rev A8, 2781.
Hadınger G., Bossıs N. \& Bessis G. 1974 J. Math. Phys. 15, 716.
Herman R. \& Rubin R. J. 1955 Astrophys. J. 121, 533.
Herzberg G. 1950 Spectra of Diatomic Molecules, (Princeton : Van Nostrand).
Honl H. \& London F. 1925 Z. Phys 38, 803.
Infeld L. \& Hull T. E. 1951 Rev. Mod. Phys. 23, 2].
Landau L. D. \& Lifshitz E. M. 1971 Relativistic quantum theory (Pergamon Pross, Now York). Manning M. F. \& Rosen N. 1933 Phys. Rev. 44, 953.
Rosen N \& Morse P M. 1932 Phys. Rev. 42, 210.
Schrodinger E 1940 Proc. R. Irish Acad. A46, 9; A46, 183 and 1941 Proc. R. Irish Acad. A47, 53 tor Haar D. 1940 Phys. Rev. 70, 222.
Varshni Y. P. 1957 Rev. Mod. Phys. 29, 664.

[^0]: (1) Hereafter, purposely, the normalization constants of the eigenfunction $U_{8}{ }^{m}(x)$ and also of the wavefunotion $R_{\nu}(r)$ are not explicited. They are caloulated further (eqs. (41) and (60)) from the explicit expression of the particular $(t=0$) dipole moment integrad $M(t)$ [eq. (4)].

[^1]: ${ }^{(2)}$ In the expression of $U_{0} m$, a multiplipative factor, independent of j, has been deleted since it cancels out, in the final result, when the expression (35) with $t=0$ is used to calculate the normalization constants of the wavefunctions.

