Indian J. Phys. 49, 642-657 (1975)

Closed form formulas for the Rosen-Morse and Manning-
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It is shown that the acceleraled ladder operator method, leads to closed
form expressions of the Rosen-Morse and Manning-Rosen rotation
vibration dipole moment matrix clements. These closed form for-
mulas, which are valid for any degree ¢ of the dipole moment\, Taylor’s
expansion, allows the calculation of the rotation vibration\intensities
for any QuvJ—Q'v'J’ transition. Explicit expressions of the rotation
vibration energy levels in terms of the quantum numbers and of the
specifio parameters of each potential are also given.

1. INTRODUOCTION

In previous papers, it has been shown how the introduction of multi-step or acce-
lerated ladder operators, within the Schrédinger Infeld-Hull factorization method
(Schrodinger 1940, 1941; Infeld & Hull 1951), enables & straightforward deter-
mination of closed form expressions of radial as well as angular matrix elements.
Particularly, this method has proved to be very efficient to obtain hydrogenic
#* radial off-diagonal matrix elements (Badawi e al 1973; Bessis e al 1973;
Hadinger ef al 1973) and, also, closed form formulas for the Morse-Pekeris rotation
vibration intensities of diatomics (Badawi et al 1973; Badawi ef ol 1974). In
fact, these two problems are closely related. As it has been shown elsewhere
(Badawi et al 1972), for several other types of diatomic potential functions, the
nuclear radial equation is still factorizable if an adequate expansion technique
is used to include the rotation.vibration coupling; moreover the Morse-Pekeris,
Rosen-Morse (1932) and Manning-Rosen (1933) potentials can be considered as
three particular cases of the same general expression.

In the present paper, the determination of the Rosen-Morse and Manning-
Rosen rotation-vibration intensities is investigated. From a theoretical point
of view, the last investigation differs from the previous ones : indeed, since the
application of our former procedure would result in intricate accelerated ladder
operators, a new canonical expression of these operators is introduced. This
new aspect of the ladder operator method has been thoroughly considered else-
whbm (Hadinger et al 1974). General results of this last reference are largely
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Rotation vibration intensities 643

used hereafter to obtain closed form formulas for the Rosen-Morse and Manning-
Rosen rotation-vibration intensities and, also, the enorgy levels. Such expres-
sions, which to our knowledge have not been yet given, could enable a comparative
interpretation of experimental results where using Morse-Pekeris, Rosen-Morse
or Manning-Rosen potentials, This last point will be investigated in a forth-
coming paper,

2. TaEORY

Within the Born-Oppenheimer approximation, the expression of the inten-
sity of a line associated with the transition QvJ— Q'v'J’ in a rotation-vibration

band of & diatomic molecules is well known to be (Herzberg 1960; Landau &
Lifshitz 1971)

I 4mNgw(2J'+1) ¢ 4 1 )z

a = -, 0] \—0 o—o ) “av MW .o )

Qg ' J’
where N, is the number of molecules in the initial state, wgy,y the vibrational

v
frequency (in em-!), M the dipole moment matrix element, J and Q the
total angular quantum numbers for the rotational state under consideration

(Hund’s coupling case (a)) and (_'é Q_l o é, )a. Wigner 3j coefficient (Edmonds

1957)

The expression (1) can be easily extended to n-pole moments, and, of course,

for singlet states (8 = 0) is identical with the Héln & London formulas (Héln
& London 1925).

When a Taylor expansion near the equilibrium distance r, is introduced for
the dipole moment i.e.,

M(r) = :Eﬂs(f—rs)‘ v @)
the dipole moment matrix element can be written
an-’ = CcC ZM‘M“) ’ ) wes (3)
PR dos’ e
where M®,, = j' Rows(r)(r—re)éRargrge (r)ridr e {4)
QlotJ’

¢ and ¢’ are the normalization constants of the nuclear radial wavefunctions
Rous(r). In view of further simplifications ocouring in the calculation, we have
not introduced the normalization constants within the matrix element (4).

The nuclear rotation.-vibration wavefunctions Rg.s(r) are solutions of the
well known equation

1 d Q—J(J+1) 2 B | ‘
mar\"a )+[_'”(_"_)+{4 (E—Ea—Q(f))]R =0, e (B)
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where u, E, Ea, Q(r) are respectively the reduced mass, the total energy, the elec-
tronic energy and the potential function. Q,J and v are the usuel quantum
numbers charaoterizing the rotation-vibration state (QJv).

When setting U(r) = rR(r), eq. (5) becomes

where 7, is the equilibrium distance of the nuclei and

W = E—Eg,
4. = B[J(J+1)—Q2, - (D
. o ' I
! Bg = 2”—,'_‘2.

The Rosen-Morse potential function is
Q(r) = B tanh(r/d—k)—C sech®(r/d—k), \ v (8)

where & is assumed to be positive (see also Appendix A).
The Manning-Rosen potential function is :

_ 1 . [B(B—Y)exp(—2r|p) A exp(—r/p)
Ar = Kp“[ [1—exp(—r/p)?  [1—exp(—r/p)] ] - O

!
In thoe expressions (8) and (9), the authors’s original’ symbols B,d, 0, k, and
K,p, A and f are used. .

As it has been pointed out elsewhere (Badawi et al 1972), the potential
functions (eqs. (8) and (9)), as well as the Morse-Pekeris potential already investis
gated (Badawi et al 1974), are particular cases of the general expression

- exp(—yr) \? xp(—yr)

For the Rosen-Morse 'potential

T = oxp(2k),
- v =2/d, -
M = 4C exp(4k),
N = —(2B+40) exp (2k), e (11)
L=B. )

For the Manning-Rosen potential
[ . :

T =-1,
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'y=l_
p,
—1
M= ﬂ(ﬁT): v (12)
4
V=g
L=0

Eq. (6) is factorizable if an adequate expansion technique is used to include

the rotation-vibration coupling term 4 (r./r)? i.e., by equating this term o an ex-
pression homogeneous to eq. (10)

(2)’=ga( exp(—1yr) )’+01( exp(—yr)

3) = ol remtm) +o( rreptam ) H0n - 09

where the C; are functions of the specific parameters 7 and y of each potential
(Badawi et al 1972).

Oo= {1— o (b oxp(—pm)+ (ot oo )7 exp (—pme),
C,= ',}.'2 exp(yr,) { ,y.ire (A +7 exp(—yry))— (,J‘,Tg;g+ 'f:::_, ) (147 exp (—7yr,))® } s

(14)

Cy =;,1 oXp(2y1,) { - 5,—?_; (L4 eXP(—-vr.))H—( ’,—;o’r-a—.+ ;,—,. )(1 +7 exp(—m))‘}-

Then, the nuclear rotation-vibration eq. (6) becomes

{E‘%—% [(M-}-A,C‘E) ( _ﬂ:ﬂl_ 2 H(N+4.Cy) ( exp(—1yr) )

147 exp(—1yr) 157 exp(—7yr)
+(L+A,00)—W]} U(r) = 0 . (1)
When setting
x=;'—r-—}ln [7] v (16)

and expressing exp (—vr) in terms of trigonometric functions, it is easily shown
that the eq. (15) can be written.

@ 8841

{ i m, —2a4q cot a(z+p)+z\} Ux) =0 e (A7)
a

2
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with
a=1,

p=ig(l+e),

8u (M i .
S=§[1+#,—;'fi(;;+4,o,)] ~12, .
g = —jie [ F+T rageiton) a8)
= i [H+ T +aeton).

A= 2+ (W—L—Cy),

¢ = +1, for the Rosen-Morse potential, |

¢ = —1, for the Manning-Rosen potential.

Eq (17) appears to be a Infeld-Hull’s type I factorizabld equation already
investigated in & previous paper (Hadinger et al 1974). Within the Infeld-Hull's

factorization schems, the factorizable eq. (17) can be replaced by each of the two
following differential equations

HgtHg~Us™ = [A—L(8)]U g™
(19)
H-5,y H*g,,Us™ = [A—-L(8+1)1Us™,

where S and m are quantum numbers characterizing the state under considera-

tion and L(S8) is a function independent of z. For a type B factérizable case.
L(8) = a*82—g?/82. v (20)

The one step up/down ladder operators are

d

* = e
Hg Sa cot a(x+p) + § F s (21)
The necessary condition for the existence of quadratically integrable solutions 1s
|m—8| = v = integer. . (22

Each eigenfunction Ugm(8 = m--v) of the whole discrete speetrum is completely
characterized by the integer value of v which fixes its rank starting from the key
function UgS(v = 0).
From accelerated ladder operator considerations, it has been shown that a general
oxpression of Ugm(x) is
Usm(z) = Us™(z)[sin a(z+p)]* Py (=1~ %—")[coth ia(z+p)], ... (28)
@) Hereafter, purposely, the normalization constants of the eigenfunction U,m(x) and

also of the wavefunotion Ry(r) are not explicited. They are calculated further (egs. (41) and
(60)) from the explicit expression of the particular (¢t = 0) dipole moment integral M(t) [eq.
H)].
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where Py(%—" %~")is a Jacobi polynomial whose parameters a, and a, will be

apecified further for each of the two potentials under consideration.

The key function (v = 0) is

(“H L)

UsS(z) = [sin a(z+p)] exp [ ( 1 )a(w+p)] . (29)

Hence, the Rosen-Morse wavefunotions as well as the Manning-Rosen wave-

functions can be derived from these general results. At this stage it is better

to consider each case separately.

8, RoseN-Morst ROTATION-VIBRATION INTENSITIES

The specific parameters of the Rosen-Morse potential are assumed to verify
the Varshni’s (1857) conditions which will be given at the end of the present
gection. Nevertheless the mathematical treatment is independant of these
conditions.

A. Wave functions

‘When specifying in (23) the parameters g and p (with e = 1) [see eq. (18)]
ono obtains the expression of the Rosen-Morse Ug™ function®

Us™x) = UsS(z)[oh(z)]0Py(*1 ~? 22—%)(—th 2) - (26)
with the following expression of the key function
_(“1 e )
UsS(x) = [eh(x)] 2 oxp [Ho,—ap)] - (28)
and [see eq. (16)]
s=—k; (—k <o < o). v (27)

The eigenfunction Us™ must satisfy the boundary conditions

Us™(—k) = Us™(+0) =0 v (28)
1t is sufficient, and of course necessary, that these conditions be fulfilled by the
key function UgS (Infeld & Hull 1951).

In. fact, as for the Morse-Pekeris functions (ter Haar 1946), it can be shown
(soe Appendix A) that, when the Rosen-Morse parameter k is large enough, the
boundary conditions (28) can be replaced, to a fair approximation, by the follow-
ing ones

Us™(—o0) = Us™(+0o0) = 0. T (29)

Then, the eigenfunctions satisfying the conditions (29) turn to be, within the fac-
torization scheme, class II (v = §—m) solution of eq, (17),
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Finally, when specifying in (25) the values of the parameters a; and o, of the
Jacobi polynomial, one obtdins the closed form expression, of the Rosen-Morse
rotation-vibration wave function(’

Routt) = L[5 —4) ™ oxp = (5 —#) ] "™ 4)

~

[—th(—z —k)], e (30)
where from ogs. (18).and (11)

L]
m= 80 =3[ 1474 #0+40)]'~0+1) e @31)
9= — g P —~2B+4,(01+C;)]
provided that m* > ¢* (class II eigenfunctions).
B. Energy levels

The eigenvalue A in eq. (17) is Am = L(m). From the exprossion (20)
with @ = i, one gets :

Am = —mP—g2im?. o (32)
By equating the expressions (32) and (18) of A, and teking into account the

quantification condition v = S—m one obtains the energy levels expressed in
terms of the quantum numbers », J and Q, and of the potpntial parameters

2 2
B = Bu—gigs—O-+ A O+ Ot 00) — g 0+

. pd? [ Ay(Cy+Cy)—2B 1
oo+ 8= | 50, ]’ e (33)

where C,, C,, C, are given by (14) and

8= +§{f d=(4o+.4.02)]‘

.Ag = Be[J(J+1)—Qa]. e (34)

The expressions (11) have been used to express the coefficienis M, N and L
of @(r) (eq. (10)) in terms of the Rosen-Morse parameters.

C. Dipole moment matriz elements _
The current matrix element [eq.(4)] to be calculated can be rewritten

MO (s,8) = Usm(@)(@d-+k—ro)t U s™(z)de, . (35)
Py 0™ . ,
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where the integration bounds (—k&, -+o00) have boen replaced by (—o0, 4-00).

This can be justified to & fair approximation provided thai k is large enough

(seo Appendix A). This condition is compatible with the Varshni’s conditions.
When introducing the classical expression of the Jacobi polynomiel (Gradsh-

teyn & Ryzhik 1965), ond obtains an alternative expression of the Rosen-Morse
funotion (25)

v
Usne) =2 Ag(ch )t oxp| (- L 4j)s] e (36)
where (@
_(*)_DS+m+jt1)
4= )2lr(m—q/m+j+1)' (@)
Hence, ono obtains®®,
MO, (&) =2 T A4 . (39)

I
whero

],,w=ff (ch z)-m-mr=i~t exp[(—l—gn'-,+j+z)z](zd+k—r,)¢dx. .. (39)

m

For ¢ = 0, the determination of the intogral (39) is straight forward and, from
tables (Gradshteyn & Ryzhik 1966), one gets :

p(mim_ 4o +.i+l)1“(ﬁ';ﬂ+l 2w

2 om 2m " 2m'
0) — omtm’+j+1-1 _
n Tn-Fm 1540

(40)
It should be noted that the normalization constant ¢ of the wavefunction is

c=[M®, (s8]

R’ J
Hence, from eq. (40), one gets
(22 Qe 4HHAT m—g/m +j + )T (m+g/m) | -} "
°= { Z ZAA T(@m+j+1) } @

For ¢ £ 0, the 75,0 integral [eq (39)] is obtainable by use of formal derivation
(see Appendix B)

In® = g(t_l ) ]ﬂ(t-x—n( 5‘3} ) ! [g(c)d* 1 +-k—r,) . (42)

8§

@In the expression of U,m, a multipligative factor, independent of j, has been deleted
sinee it cancels out, in the final result, when the expression (35) with ¢ = 0 1s used to calculate
the normalization constents of the wavefunctions,

“)Primed notation correaponds to quantum numbers S, m’ and v'.
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where
o = —g/m—q'/m’'+j+1

o) =4 [W( G+ DAy (G mEmEE ] L

(2ot = @osn{yon (5422 4 ponnyon( 3 4 0T

r is the Euler function and ¥ stands for the s-th derivative with respect to o
which ean be obtained by the following relationships.

po=-doo k-1

PYa) = (=)l 3

. (44)
n=0 (2+n)'+

where ¢ = —0.,577215665 is the Fuler-Mascheroni constant. Fot large values of |
z, asymptotic expansions of these functions are available elsewhero (see for
instance Badawi et al 1974).

D. Rosen-Morse potential paramelers

Following Varshni (1957), the necessary conditions to be fulfilled by the poten-
tial energy curvo are

1. This curve should have at least a minimum lgcated at "= 7, i.e., the
potential parameters must verify

B
—1<2-E<1
and kd>r, if B>0
kM<r, if B<O.

As pointed out before, & is chosen positive although it is not & necessary condition
to be fulfilled by the potential energy curve (see Appendix A).

2. This curve should come asymptotically to a finite value as r— o0 i.e.
the potential paramoters must verify

25 (B+20) = Dy = Q(-+e0)—Qra).

4. MANNING-ROSEN ROTATION-VIBRATION INTENSITIES

The treatment of the Manning-Rosen potential is analogous to that of the
Rosen-Morse potential,
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A. Wave functions |

From egs. (18), (12) and (23), one obtains the expross:on of the Manning-
Rosen Ug™ funotmn

Ug™(x) = UsS(2).(sh 2)?P,(®1~% %2=v)(_qoth 7) .. (4B)

with the following expression of the key function

ay +a,)

UsS(x) = (sh ) ( expl (e —ay)x]. - (46)

and [see eq. (16)]
z=~2';;(0<=< +c0) . (@47)

Within the factorization scheme, the class I (v = m—8) solutions of eq. (17)
will satisfy the necessary boundary conditions

Us™(0) = Us™(+00) = 0. .. (48)

Hence, one obtains the closed form expression of the Manning-Rosen rotation
vibration-wavefunotion (1

Rowstr) = 5 [sb( ) 1™ exp 52",

—m—l+ ———. —-m—1— ‘1 r
P"( m-1 m—l‘-l (—coth Eb) ) e (49)
where from egs. (18) and (12)

m+1 = S+o+1 = (+D-+{1+%2 (50 1400, |

o= -2 0 Akt | e (60)

provided that ¢ < 0 and (m+1)? < — g; (Class I eigenfunctions)

B. Bnergy levels

-

The eigenvalue A in the eq. (17) is Ay, = L(m+1). From the exprelslon (20)
with @ = ¢, one gets

Am = —(m+1)*—g*/(m+1)8. ' C e (51)
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Then, by equating the expressions (61) and (18) of A and taking into account the
quantification condition » = m—§, one obtains the energy levels in terms of the
quantum numbers v, J, and Q and of the potential parameters,

2
E = Bu— gz + g BA—1)+24] +A4[0, 0, +1/4 0]

s (0H B =g s (018 e

_2_,@[ Ae(C,+0y) HA(B—1)+ 4]/ Kp? ]2
B2 20+3)4-8s

where C,. C,, C, are given by (14) and

{l_l_sltp ﬂ(ﬂ—l) 44,0, ]}

A, = BI(J+1)— Q2. \ e (53)
C. Dipole moment, matriz element |
The current matrix element eq. (4) to be calculated is

Mo (8, 8) = j’Usm*(w)(sz_r,)tUs'm'(x)dx, . (54)
Qe

where the Us™ and Us"™’ functions are given by eqs. (45) and (46).

An alternative expression of the Manning-Rosen Umg function is

um ~":E Aj(sh z)m1~ ex: [(J_+> ] 5

e P{\ma1)® .. (BB)

where(®
D(—m—8—1 +_,')
v
= (=)

Ar=( )( J )2’I‘(—m+ Ty +J) (56)

Henoe, one obtains(®
v v -
m® . (8,8) =:E'o Eo AJA T, . D

Ne'J’

where

Tn® = 6[ (sh z)2tm+m'—j-1 exp[( mL_H-[- Wq-_I-T +j+! )x] (2px—re)dz. ... (58)
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For ¢t = 0, one gets (Gradshteyn & Ryzhik 1965) '

_m+tm’  q ¢ _ ' .
P B2 I 30 L) Tm-+n' 4351
m+m q g .
F( ) "2(m+1)"2(m'+1)+2"‘l) v (69)

and, consequently, the following expression of the normalization constant of the
wavefunction.

—172
27+i~3-3m ( —_m— (E?T-"l ) 1) T'2m+3—j—1)

c={ 3 I AA (60)

=0 10 D(m— ol +2—5-1)

Tor ¢ # 0, the 7y'® integral [eq (58)] is obtainable by use of formal deriva-
tion (see Appendix B).

t-1ff—1 8
Iuw =3 (*71) g (L) inonzorn—ra, . (01)
where

o = g/(m+1)+q'[(m’ 4+1)+j+1

o) = 4 {¥ (= G424+ E TN (g AWMLY ey
( 6% ).g(a') = *lSH)(_)'{,ﬁ(l) (_‘;L_ +2+_m+m+;—j_—_l_)

_Wn(_“;_l_ﬂu__l )}
2 2

is the Euler y function and y* stands for the s-th derivative with respect to

o (see eq. (44)). ’

D. Manning-Rosen potential parameters.

1. For the existence of a minimum of the potential energy curve at » = r,,
the necessary condition to be fulfilled by the potential parameters is

4 = 2f(f—1)[exp(re/[p)—1]"

2. The potential curve should come asymptotically to & ﬁmte value a8
r—> 400 i.e., the potential parameters must verify

4
IEFAE=T) = De = A0)—Cro).

with K >0 and p > 0.
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. 8. CoNcLUSION

Finally, our ladder operator procedure enables the determination of closed
form exprossions of the Rosen-Morse and Manning-Rosen dipole moment matrix
elements of a diatomic molecule, which is valid for any degree ¢ of the dipole moment,
Taylor’s expansion, hence, the calculation of the rotation-vibration intensities for
any transition QuJ—Q'v'J’. Of course, from a physical point of view, the
limitations of the usefulness come from the knowledge of reliable Taylor coeffi-

cients M; [eq. (2)] and also from the availability of good parameters for these
potentials whioh are likely to be more flexible than the Morse-Pekeris potential.
Explicit expressions of the rotation-vibration energy levels in terms of the quan.
tum numbers QvJ and the potential parameters have been given. Since such
formulas have been previously obtained for the Morse-Pekeris potential (Herman
& Rubin 1955; Badawi e al 1974), it is now possible, and should be interesting,
to study the comparative merits of the throe potontials. It should be noted that
the calculation of the Morse-Pekeris, Rosen-Morse and Manning-Rosen potentials
rotation-vibration dipole moment is also possible by use of four terms recursion
formulas (Badawi 1973); nevertheless, from a computational point of view,
the use of the closed form oxpression is, by far, more advantageous.

v

APPENDIX A

ExTENSION OF THE BOUNDARY CONDITIONS FOR THE ROSEN-MORSE
{
Wave Foncrions *

1. Wave funciions

As pointed out in Section (3A), the Rosen-Morse function Ug™ must
satisfy the boundary conditions

Us™(—k) = Usg™(+0) = 0 .. (A1)

Our purpose is to show that, to & fair approximation, these conditions can be
replaced by the following ones

Ugm(—c0) = Us™(-+o0) = 0 e (A2)

Sinco the application of the ladder operators preserves the boundary condi-
tions (Infeld & Hull 1951), it is nocessary and sufficient that the approximative
equivalence of condition (Al) and (A2) be fulfilled by the key function Us®.

UsS(x) = [oh z]~S exp(—gqz/m) - . . (A3)

with 8% > mé > ¢2
We need to demonstrate that it is possible to choose k > 0 in order to arbi-
trarily lessen the ratio UsS(—k)/UsS(z,), U(z,) being the maximum value of the
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function. Since UsS(xy) > UsS(0) = 1, it is sufficient to prove that, by a suit-
able choice of k, one can get UsS(—k) < eUs5(0), € boing arbitrary small i.e.;

(ch k)~S exp(gkim) < €
After a few manipulations, one obtains the required condition
k> Inr.
€
IT. Dipole moment matrix element

Correspondingly, when calculating the current dipole matrix element (eq. (35)),
one can replace tho integration bounds (—k, +c0) by (—oo, +o0) From eq.
(38), since the A, coefficients do not dopend on &, and from the recurrence formulas
(42), it 15 easily seen that it is sufficiont to prove the validity of the oxtension of
the intogration bounds for 75 i.e., that, by a suitable choice of %, one can get

-k
J (ch z)~28 exp(—2gx/m)dx < €, ¢ arbitrary small.

One obtains, in terms of tho incompleto-Beta function, or the hypergeomeric
function (Gradshteyn & Ryzhik 1965)

B( 1 )(S—q/m, S+gq/m)
Thek
_F(8—q/m, 1—8—q/m; 8—q/m-+1; (14-¢F)1) <e
(8—g/m)(1+-e*)5=/m
For k largo‘ enough, one can retain only the first term of the hypergeometric serie
and obtain the 1equired condition

kE>Inlfe

From analogous considerations, such an extension of the bounds is usually made
for the Morse potential. It has been justified for the wavofunction by Ter Haar
(1946).

ArrrnDIX B
Recurrence formulas for the Rosen-Morse and Manning Rosen Jn'® integral
The Roson-Morse £t integral is (eq. (39))
Tn = @' [ (oh )-m-m'~4-1 oxp [0z)(z+b)da ... (Bl)
where

= —g/m—q'|m'+j+1
b = (k—r)/d. . (B2)
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By formal derivation with respect to the o parameter it is eagy to find the following
relationships

J(H—l)(a') =0 (b-aa'-l‘.b) ](”(a-) e (B3B.)
% [T = 9(a) 7 (o), ... {B3b)

where g(o) is defined by the expression (43).
The Manning-Rosen 75;'¥ integral is (eq (58))

Tl = @p) § (sb z)mem -4 oxp [oa)(a-+b)d, . (BY)

where

o = g[m+1)+¢'[(m'+1)+j+1
=T \ ... B5)

By formal derivation with respect to the ¢ parameter it is é@sy to find the
following relationships

JH (o) = 2p ( (%_ -I-b) FO(0 ... (B6a)

3 (7)) = g(e)T0) .. (B6D)

where g(c) is given by the expression (62)

Consequently, both Rosen-Morse and Manning % Rosen integrals verify the
same function relationships (see eq (B3) and (B6).

From (B3a), ( b%-'l'b) can be considered as a one-step up ladder operator,
Consequently,

7o) = &t |5 +5]' 7000, . (BT
On the other hand, from (B3, b) and (B7)
2 179000 = & (2 +5 ) o(e) T (o))
Henoe, using Leibnitz’s rule, one obtains

Jer(o) ="}.‘30 (:) ( a%_ )'[g(o')d'+l+bd]'
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This formula holds both for the Rosen-Morse and the Manning-Rosen inte-

For the Rosen-Morse oase, b and ¢ aré given by (B2) and g(o) is defined

by eq.(43). For the Manning-Rosen case, b and o are given by (B5), g(o) by
(62), and ¢ has to be replaced by 2p.
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