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It is shown that tho accelerated ladder operator method, leads to closed 
form expressions of the Rosen-Morse and Manning-Rostn rotation 
vibration dipole moment matrix elements. These closed form for- 
mulas, which are valid for any degree t of the dipole momen^ Taylor’s 
expansion, allows the calculation of the rotation vibrationUntensities 
for any ^lvJ^Q!v'J* transition. Explicit expressions of tne rotation 
vibration energy levels in terms of the quantum numbers ^ d  of the 
specifio parameters of each potential are also given.

1. Introduction

In previous papers, it has been shown how the introduction of multi-atep or o-ccc- 
lerated ladder operato'rs, within the Sohrodinger Infold-Hull factorization method 
(Schrodinger 1940, 1941; Infeld & Hull 1951), enables a straightforward deter­
mination of closed form expressions of radial as well as angular mairix elements. 
Particularly, this method has proved to be very efficient to obtain hydrogenic 

radial off-diagonal matrix elements (Badawi et al 1973; Bessis et al 1973; 
Hadinger et al 1973) and, also, closed form formulas for the Morse-Pekeris rotation 
vibration intensities of diatomics (Badawi et al 1973; Badawi et al 1974). In 
fact, these two problems are closely related. As it has been shown elsewhere 
(Badawi et al 1972), for several other types of diatomic potential functions, the 
nuclear radial equation is still faotorizable if an adequate expansion technique 
is used to include the rotation-vibration coupling; moreover the Morse-Pekeris, 
Rosen-Morse (1932) and Manning-Rosen (1933) potentials can be considered as 
three particular cases of the same general expression.

In the present paper, the determination of the Rosen-Morse and Manning- 
Rosen rotation-vibration intensities is investigated. From a theoretical point 
of view, the last investigation differs from the previous ones : indeed« since the 
application of our former procedure would result in intricate cM̂celerated ladder 
operators, a new canonical expression of these operators is introduced* This 
new aspect of the ladder operator method has been thoroughly considered else­
where (Hadinger et al 1974). General results of this last reference are largely

642



notation vibration intenaitiea m
used hereafter to obtain closed form formulas for the Roaen-Morae and Manning-̂  
Rosen rotation-vibration intenaities and  ̂ also, the enorgy levels. Such expres­
sions, which to our knowledge have not been yet given, could enable a comparative 
interpretation of experimental results where using Morse-Fekeris, Rosen-Morse 
or Maiming-Roaen potentials. This last point will be investigated in a forth­
coming paper.

2. Thhoey

Within the Born-Oppenheimer approximation, the expression of the inten­
sity of a line associated with the transition Cl'v'J' in a rotation-vibration
band of a diatomic molecules is well known to be (Herzberg 1950; Landau & 
Lifshitz 1971)

_ 4 ^^N q ,j(2J '+ l) ( j  1 J ’ Y  
3te[2-tf(a  Q')]' \ - £ l  Q -Q ' £1' ) J " '

where N qvJ is the number of molecules in the initial state, wqvj the vibrational
frequency (in om~ )̂, M  the dipole moment matrix element, J  and fl the 
total angular quantum numbers for the rotational state under consideration

(Hund's coupling case (a)) and q ')®' coefficient (Edmonds
1967)

The expression (1) can be easily extended to n-pole moments, and, of course, 
for singlet states (S =  0) is identical with the Hdln & London formulas (Hdln 
& London 1926).

When a Taylor expansion near the equilibrium distance is introduced for 
the dipole moment i.e.,

M(r) ^  I,Mt{r-re)^ 
t

the dipole moment mai^ix element can be written

(2)

(3)

whore
0

(4)

c and c' are the normalization constants of the nuclear radial wavefunctious 
^ qvA^)- Ie view of further simplifications ocouring in the calculation, we have 
not introduced the normalization constants within the matrix element (4).

The nuclear rotation-vibration wavefuhetions solutions of the
well known equation

(6)
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(6)

where E, Eei, Q{r) are respectively the reduced mass, the total energy, the elec­
tronic energy and the potential function. Q,J and v are the usual quantum 
numbers characterizing the rotation-vibration state (£2Jv).

When setting U{r) = rB{r), eq. (6) becomes

( ^ ) ‘] U - O .

where is the equilibrium distance of the nuclei and 

W = E -E el,

A e  =  Se[.^(J+l)-£i*],

Ihe Bosen-Morse potential function is

Q[r) =  B  tanh(r/d-*i)-0  soch*(r/d-fc), \

where k is assumed to bo positive (see also Appendix A).
The Manning-Biosen potential function is :

OM ■= A '  exp(-r/p) 1
 ̂ Ep  ̂ L [1—exp(—r/p)]8 [1—exp(—r/p)] J’

(7)

(8)

(9)

In the expressions (8) and (9), the authors's original* symbols B, d, C, h, and 
E ,p , A and are used. .

As it has been pointed out elsewhere (Badawi et al 1972), the potential 
functions (eqs. (8) and (9)), as well as the Morse-Fokeris potential already investis 
gated (Badawi et al 1974;), are particular cases of the general expression

U + r  exp(—yr) 

For the Bosen-Morse potential

T =  oxp(2fc),
y =  2/d,

ilf =  4C7exp(4A;),
Iff =  -(2B+40)exp(2fc), 
L  = B.

(10)

(11)

For the Manning-Bosen potential

T — - 1 ,
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1V =  _ .

■“  K p *  •

N ^ __ t̂ L

... (12)

X =  0.

Eq. (6) is faotorizable if an adequate expansion technique is used to include 
the rotation-vibration coupling term A^{rjr)^ i.e., by equating this term to an ex­
pression homogeneous to eq, (10)

-  (*»>

where the Ct are functions of the specific parameters t and y of each potential 
(Badawi et at 1972).

( H - ’- e x p ( - r e ) ) + ( ^ ^ +  ^  ) { l + T e x p ( - y r ) ) * } ,

Cl =  ^ 2  e x p ( r o  { ^  ®3‘p (-r» 'e ))® - ( ^ * +  + ’■ ®=*p ( - y O ) ® } .

(U)

<̂2 = ^ o x p ( 2 y » - , ) { -  ^ ( 1 + T e x p ( - y O ) * + ( : ^ + - : ^  ) ( l+ T e x p ( - y r , ) ) ‘ J. 

Then, the nuclear rotation-vibration eq. (6) becomes

+ ( i+ ^ .C ,) - i r ] } U ( r )  =  0 ... (15)

When setting

*  =  | ^ - J I n  | t | ... (16)

and expressing exp (^yr) in terms of trigonometric functions, it is easily shown 
that the eq. (15) can be written.

{ ~ r 1 ~ i 'a « ( * + ? ) + a J v {x) == 0  

y -  Biu a(*+lJ)J
... (17)
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0 = » ,
.W

3» =  * j ( l+ e ) .

9 =  [^■ * 'T  +^e(^l+^*)]> (18)

=  2 q + ^ ( W - L - C , ) .

e =  +1, for the Rosen-Morse potential, ^
e =  —1 , for the Manning-Rosen potential. t
Eq. (17) appears to be a Infeld-Huirs type E faetorizabla equation already 
investigated in a previous paper (Hadinger et al 1974). Within the Infeld-HuU’s 
factorization scheme, the factorizable eq, (17) can be replaced by each of the two 
following differential equations

Hs^Hs’-Us”̂ = [A-^L(S)]Us^

H-s^i H^s+xUs”̂ =  LA--ii(S+l)]C^5’̂ ,
(19)

where S  and m are quantum numbers characterizing the state under considera­
tion and L(^) is a function independent of x. For a type E fact(l>rizable case.

L(S) = a^8^^q^lSK ... (20)

The om step up/down ladder operators are 

H s^ = Sa cot a(x+p) (21)

The necessary condition for the existence! of quadratically integrablo solutions js
|m —)S| =  =  integer. ... (22)

Each eigenfunction Us^(S =  m±u) of the whole discrete spectrum is completely 
characterized by the integer value of v which fixes its rank starting from the key 
function Us^{v =  0).
From accelerated ladder operator considerations, it has been shown that a general 
expression of Us^(x) is

U s^{x) =  I7)Sf’"{a;)[8ina(a;+p)]*’ ®2-w)[ooth ia(a;+p)], ... (23)
Hereafter, purposely, the normalization constants of the eigenfunction and

also of the wavefunotion Rv{r) are not explioited. They are calculated further (eqs. (41) and  
(60)) from the explicit expression of the particular (t =  0) dipole moment integral M{t) [eq- 
(4)].
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where a Jacobi polynomial whose parameters and «g will be
specified further for each of the two potentials under consideration.
The key function (v =  0) is

\ r
(24)

Hence, the Rosen-Morse wavefunotious as well as the Manniug-Rosen wave- 
functions can be derived from these general results. At this stage it is better 
to consider each case separately.

3 , R o sen-Mobsb R otation-Vibration  I ntensities

The specific parameters of the Rosen-Morse potential are assumed to verify 
the Varshni's (1967) conditions which will be given at the end of the present 
sections Nevertheless the mathematical treatment is independant of these 
conditions.
A. Wave functions

When specifying in (23) the parameters a and p (with e =  + 1 ) [see eq, (18)] 
one obtains the expression of the Rosen-Morse function*^*

Us^{x) = (7s (̂T)[oh(a;)]^P„(“i-^^ “a-^)(-th  x) (25)

^vith the following expression of the key function

and [see eq, (16)]

Us^(x) =  [oh(a;)] \ 2 j oxp [i(<̂ i—az)x]

X  =  ' j — k ]  { — k  <  JC <  + 0 0 ) .

(26)

... (27)

The eigenfunction Us^ must satisfy the boundary conditions 

r/s“ (—fc) =  Vs^(+oo) == 0 (28)

It is sufficient, and of course necessary, that these conditions be fulfilled by the 
key function Us^ (Infeld & Hull 1961),

In fact, as for the Morse-Pekeris functions (ter Haar 1946), it can be shown 
(see Appendix A) that, when the Rosen-Morse parameter Ic is large enough, the 
boundary conditions (28) can be replaced, to a fair approximation, by the follow­
ing ones

Us^{-oo) =  ?75'»(+oo) =  0. (29)

Then, the eigenfunctions satisfying the conditions (29) turn to be, within the fac­
torization scheme^ class II  (v =  <9—w) solution of eq, (17),
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Finally, when specifying in (26) the values of the parameters and of the 
Jacobi polynomial, one obtains the closed form expression, of the Bosen-Mor.so 
rotation-vibration wave function*^^

B M r) =  fc)]

( _ th ( - J - f c ) ] ,  ... (30)

where from oqs. (18) and (1 1 )

m =  5 —V =  J^l+^d®(4C'+ileC'a) j —(v+i) (31)

9 =  -  rf*l-2fi+^e(Oi+Cs)] 

provided that (class II eigenfunctions),

B. Energy levels
The eigenvalue A in eq. (17) is A^ =  L(m). From tlie expression (20) 

with a — i, one gets :
(32)

By equating the expressions (32) and (18) of A, and taking into account the 
quantification condition v ~  S —m one obtains the energy levels expressed m 
terms of the quantum numbers v, J  and Q, and of the potbntial parameters

E  =  Eel-

fe* i^ ^ \M G r + C ,) -2 B Y (33)•' 2ft* L 2(t>+i)-

where Oq, C ,̂ C2 are given by (14) and

8 j =  [ l+ |^ d * (4 0 + ^ A )]*

A e  -  B*[J(J+l)-£2*].

The expressions (11) have been used to express the coefficients Af, N  and L 
of Q[r) (eq. (10)) in terms of the Rosen-Mofse parameters.

C. Dipole nmmenJl matrix elements
The current matrix element [eq,(4)] to be calculated can be rewritten

(34)

iWW {s, s') =  Us”*^x){xd-\-k-^re)^ V s^\x )dx ,
uVi/ _aoWVJ' . ^

(35)
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where the integration bounds -|-oo) have been replaced (—oo, -|-oo).
This can be justihed to a fair approximation provided that ic is largo enough 
(see Appendix A). This condition is compatible with the Vaishni’s conditions.

When introducing the classical expression of the Jacobi polynomial (Gradsh- 
teyn & Ryzhik 1965), ond obtains an alternative expression of the Rosen-Morse 
function (25)

j"*0 A) (ch exp [  ̂ + j j X1 ... (36)

where

A i =
/ V  ̂ r(8+ m + j+ l)

... (37)

Hence, one obtains*®*.

... (38)

where

=  T ( c t  ... (39)

For  ̂“  0, the determination of the integral (39) is straight forward and, from 
tables (Gradshteyn & Ryzhik 1965), one gets :

r .(m + m '_  _  q' \ i m+m' q j [ _ \
7,.(0) =   ̂ 2 2m 2m' j \ 2 2m 2m')

r ( w + j  -\-i)
... (40)

It should be noted that the normalization constant c of the wavefunction is

n'ti'J'
Hence, from eq. (40), one gets

For t ^ 0 ,  the integral [eq (39)] is obtainable by use of formal derivation 
(see Appendix B)

the expression of 17»«, a multiplicative factor, independent of has been deleted 
since it cancels out, in the final result, when the expression (36) with « = 0 is used to calculate 
the normalization constants of the wavefunctionSi

P̂rimed notation corresponds to quantum numbers S\ m' and v\
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(T =  — q lm — g’l m ' + j + l

Xir) -  t [ - f  (-!■ +  ) ] ... (43)

ijr is the Euler function and stands for the s-th derivative with respect to v  
which can be obtained by the following relationships.

,̂ (z) =  - 1 - C 7 - S  ( - 3 ^ - M  ' z n_x\2+ n  n/
(44)

where C =  —0.577215665 is the Buler-Mascheroni constant. Fot large values of 
z, asymptotic expansions of these functions are available elseyhero (see for 
instance Badawi et al 1974).

D. Rosen^Morse potential parameters
Following Varshni (1957), the necessary conditions to be fulfilled by the poten­

tial energy curve are

1. This curve should have at least a minimum Igcated at r  =  r̂  i.e., the 
potential parameters must verify

B

and
2C

kd> r^  if B >  0

kd <r^ if B < 0.

As pointed out before, k is chosen positive although it is not a necessary condition 
to be fulfilled by the potential energy curve (see Appendix A).

2. This curve should come asymptotically to a finite value as r->+oo i.e. 
the potential parameters must verify

^  (5+2C)» =  De =  Q(+oo)-Q(r;).

4, Manning-Rosbn Rotation-Vibration Intbnsitibs

The treatment of the Manning-Rosen potential is analogous to tjiat of the 
Rosen-Morse potential,
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A. Wem funaiona

From eqs, (18), (12) and (23), one obtains the expi-ossion of the Manning- 
Bosen U ;^  function ‘

XJ^{x) =  Fs'S(a!).(8ha:)»P„(“i-®»“a-*')(—ootha:) 

with the following expression o f the key function

_ / < » i+ g a \
V^(x) =  (sh x) V 2 /  exp[J(ai—Oa)x]. 

and [see eq. (16)]

(46)

(46)

» =  ^ : (0 <  » <  + 00) (47)

Within the factorization scheme, the class I  {v =  m—S) solutions of eq. (17) 
will satisfy the necessary boundary conditions

Ui^{0) =  I75®(+oo) =  0. ... (48)

Hence, one obtains the closed form expression of the Manning-Rosen rotation 
Tibration-wavefunction

=  i  [d .(  i )  ]**■ « p

( —w—1+ — —m—1 — — - W r \
P v ^  ^ + 1  j ,  . . .  (49)

where from eqs. (18) and (12)

m + l  =  8 + v + l  =  ( u + i ) + i [ l + ® g ! ( ^ ^ )  +AeP^) ]*

provided that q < 0  and (m +l)®  <  — g; (Class I  eigenfunctions)

B. Energy levels

The eigonvalue A in the eq, (17) is A«, =  i ( j » + l ) .  From the expression (20) 
with a =  i, one gets

Am =  -(m+l)*-g®/(w+l)*. ... (51)



If. BessiB, G. Bessis and G- Badinger

TbeUj by equating the expresaionB (61) and (18) of A and taking into account the 
quantification condition v =  vi’- S ,  one obtains the energy levela in terms o f  the 
quantum numbers v, J ,  and and of the potential parameters,

E =  hei— +1/4 02] —

ft*

2/̂ p* r ^e(Ci+C7a)+[/9(^ -l)+ ^ ]/ifp »  la
L 2(»;+J)+J} J -

whore C .̂ Oj, are given by (14) and

Kp^

Ae =  B « [ ^ ( ^ + 1 ) - £ 1 » J .  '

C. Dipole moment matrix element

The current matrix element eq. (4) to be calculated is

S*) =  r Us^^{x)(2px-TeYUs'^\x)dx,

where the and U s^ ' functions are given by eqs. (45)tind (46). 

An alternative expression of the Manning-Rosen JJ^s function is

TJ^S i4/(sh a:)»»^W exp  ̂ j

(62)

(53)

(64)

(66)

where<2̂

• I V \ 1 + j )

Hence, one obtains^^^

‘-0
where

™ J (gh a;)2+»n+wiW-J exp [ /  —̂  
0 L \>

(66)

(57)

m+ 1  w' + j+ ^  (2px—re)Hx. ... (58)
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For t =  0, one gets (Gradshteyn & B yshik 1966)

9
Jjj(o) =  3J+'-

j ,  /m +m '
\ 2 2(m +l) 2(m '+l)4 ^ , + i - i - i ) ... ( w

and, consequently, the following expression of the normalization constant of the 
wavefunction.

" 1/2

c =  -̂

For i #  0, the integral feq (58)] is obtainable by use of formal deriva­
tion (see Appendix B).

where

J;«“* =  , ^ ( \  ) ( ^ ) l 7(<r)(2p)*+»-r*L ... (01)

t7 =  g / ( w i+ l ) + g 7 ( w i '+ l ) + j + Z

Q ' m  -  j “ « ' ( - ) - { ^ « ( - | - + 2+ - = ± = ^ )

1 - )}
is the Euler ^  function and stands for the ^-th derivative with respect to 
(T (see eq. (44)).

D. Manning-Bosen potential parameters.
1 . For the existence of a minimum of the potential energy curve at r =  

the necessary condition to be fulfilled by the potential parameters is

A  =  2/y(/?-l)[exp(r,/^)-l]-»

2, The potential curve should come asymptotically to a finite value as 
r-> +00 i.e., the potential parameters must verify

4*

with iC >  0 and p >  0.
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5. COHOLUSIOH

Finally, our ladder operator procedure enables the determination of closed 
form expressions of the Rosen-Morae and Mauning-Rosen dipole moment matrix 
elements of a diatomic molecule, which is valid for any degree t of the dipole moment 
Taylor’s expansion, hence, the calculation of the rotation-vibration intonsilies for 
any transition Of course, from a physical point of view, the
limitations of the usefulness come from the knowledge of reliable Taylor coeffi­
cients Mt [eq. (2)] and also from the availability of good parameters for those 
potentials which are likely to be more flexible than the Morse-Pekeris potential. 
Explicit expressions of the rotation-vibration energy levels in terms of the quan­
tum numbers ClvJ and the potential parameters have been given. Since such 
formulas have been previously obtained for the Morse-Pekerifl potential (Herman 
& Rubin 1955; Badawi et al 1974), it is now possible, and should be interesting, 
to study the comparative merits of the throe potentials. It should bo noted that 
the calculation of the Morse-Pekeris, Roson-Morse and Manniim-RoBon potentials 
rotation-vibration dipole moment is also possible by use of four terms recursion 
formulas (Badawi 1973); nevertheless, from a computational point of view, 
the use of the closed form expression is, by far, more advantageous.

Ap p e n d ix  A

E x t en sio n  op th e  B o und ar y  Co nditio ns for th e  R o^e n -Morse 
W ave  F unctions

I. Wave functions
As pointed .out in Section (3A), the Rosen-Morse function Us'^ must 

satisfy the boundary conditions

?75»»(+ĉ ) =  0 ... (Al)

Om- purpose is to show that, to a fair approximation, these conditions can he 
replaced by the following ones

Us^(-oo) =  ?75”̂ (+oo) =  0 (A2)

Since the application of the ladder operators preserves the boundary condi­
tions (Infeld & Hull 1951), it is necessary and sufficient that the approximative 
equivalence of condition (Al) and (A2) be fulfilled by the key function Us^-

Us^{x) =  [oh x]-^ Qxp(~qxlm) ^ (A3)

with >  g®.
We need to demonstrate that it is possible to choose A; >  0 in order to arbi­

trarily lessen the ratio Us^(—^)IUs^(xq), U{Xq) being the maximum value of the
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function. Since Us^(x^ ^  =  1 , it is sufficient to prove that, by a suit­
able choice of hi one can get XJs (̂—h) <  e?75'Ŝ(0)', e being arbitrarj^ small i.e.;

(ch k)~^ exp(grjfc/m) <  e

After a few manipulations, one obtains the required condition

k > In—. e

IT. Dipole moment maJtrix element
Correspondingly, when calculating the current dipole matrix element (eq. (35)), 

one can replace the integration bounds {—fc, +oo) by (—oo, +oo) From eq.
(38), since the coefficients do not depend on k, and from the recurrence formulas 
(42), it IS easily seen that it is sufficient to prove the validity of the extension of 
the integration bounds for i.e,, that, by a suitable choice of k, one can get

-k
J (cha;)'2*s 6xp(—2ga:/m)da; < e, e arbitrary small.

^O D

One obtains, in terms of the incomploto-Beta function, or the hypergeometric 
function (Gradshteyn & Ryzhik 1965)

1 \(S —qlm, S+qlm)
\ T ^ )

F{8—qlm, 1 —6f—g/m; S —qlm+l] (1 +e^)"^) 
(S-qlm){l+e'^)s-<Jlrr^ < e

For k largo enough, one can retain only the first term of the hyporgeometric serie 
and obtain the lequired condition

k > In 1 /e

From analogous considerations, such an extension of the bounds is usually made 
for the Morse potential. I t has been justified for the wavofunction by Ter Haar 
(1946).

A p p e n d i x  B

Recurrence formulas for the Rosen-Morse and Manning Rosen integral 

The Roson-Morse integral is (eq. (39))

+•

where

=  d* J (ch exp [(ra;](:c+6)*da:
-w

cr =  —qlm—q'lm '+j+l 
b =  (k-r,)ld .

... (Bl)

... (B2)
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By formal derivation with respect to the <r parameter it is easy to 6nd the following 
relationships

d

where g(<r) is defined by the expression (43). 

The Hanning-Bosen integral is (eq (58))

(B3a)

^B3b)

— (2p)‘ J (sh exp [cra:](*4-6)yx,
0

where
<r =  ql(m +l)+q'l(m '+l)+j+l

b = —2p \

(B4)

B5)

By formal derivation with respect to the <r parameter it is ip.sy to find the 
following relationships

J'«+i'((r) =  2p ( ^ + 6) J«)(o

^ [ 7 ‘“'(«r)]=!7(o-)J<®'(«r)

(B6a)

(B6h)

where g{a) is given by the expression (62)

Consequently, both Rosen-Morse and Manning ft Rosen integrals verify the 
same function relationships (see eq (B3) and (-66).

From (S3a), ( ^ + ^ )  considered as a one-step up ladder operator,

Consequently,

j(«(a) =  d t [ ^ + 6] ‘ j(»>(«r). ... (B7)

On the other hand, from (B3, b) and (B7)

^ J '« ((r)]  =  dt (^+t)I[j(cr)J<o)(o-)].

Hence, using Leibnitz's rule, one obtains 

1-0
J«+i'(o-) =  S (i)  ( )'to((r)d*+i+6d].
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This formula holds both for the Roseu-'Morse and the Manning»Rosen inte- 
For the Bosen-Morse case, h and (r ati given by (B2) and g{(r) is defined 

by eq. (43)* For the Manning-Rosen case, h and a are given by (B5), g{(r) by 
(fi2), and d has to be replaced by 2p,
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