324 research outputs found

    Alpha-band rhythms in visual task performance: phase-locking by rhythmic sensory stimulation

    Get PDF
    Oscillations are an important aspect of neuronal activity. Interestingly, oscillatory patterns are also observed in behaviour, such as in visual performance measures after the presentation of a brief sensory event in the visual or another modality. These oscillations in visual performance cycle at the typical frequencies of brain rhythms, suggesting that perception may be closely linked to brain oscillations. We here investigated this link for a prominent rhythm of the visual system (the alpha-rhythm, 8-12 Hz) by applying rhythmic visual stimulation at alpha-frequency (10.6 Hz), known to lead to a resonance response in visual areas, and testing its effects on subsequent visual target discrimination. Our data show that rhythmic visual stimulation at 10.6 Hz: 1) has specific behavioral consequences, relative to stimulation at control frequencies (3.9 Hz, 7.1 Hz, 14.2 Hz), and 2) leads to alpha-band oscillations in visual performance measures, that 3) correlate in precise frequency across individuals with resting alpha-rhythms recorded over parieto-occipital areas. The most parsimonious explanation for these three findings is entrainment (phase-locking) of ongoing perceptually relevant alpha-band brain oscillations by rhythmic sensory events. These findings are in line with occipital alpha-oscillations underlying periodicity in visual performance, and suggest that rhythmic stimulation at frequencies of intrinsic brain-rhythms can be used to reveal influences of these rhythms on task performance to study their functional roles

    Tumor-derived exosomes confer antigen-specific immunosuppression in a murine delayed-type hypersensitivity model

    Get PDF
    Exosomes are endosome-derived small membrane vesicles that are secreted by most cell types including tumor cells. Tumor-derived exosomes usually contain tumor antigens and have been used as a source of tumor antigens to stimulate anti-tumor immune responses. However, many reports also suggest that tumor-derived exosomes can facilitate tumor immune evasion through different mechanisms, most of which are antigen-independent. In the present study we used a mouse model of delayed-type hypersensitivity (DTH) and demonstrated that local administration of tumor-derived exosomes carrying the model antigen chicken ovalbumin (OVA) resulted in the suppression of DTH response in an antigen-specific manner. Analysis of exosome trafficking demonstrated that following local injection, tumor-derived exosomes were internalized by CD11c+ cells and transported to the draining LN. Exosome-mediated DTH suppression is associated with increased mRNA levels of TGF-β1 and IL-4 in the draining LN. The tumor-derived exosomes examined were also found to inhibit DC maturation. Taken together, our results suggest a role for tumor-derived exosomes in inducing tumor antigen-specific immunosuppression, possibly by modulating the function of APCs. © 2011 Yang et al

    Diagnosis and management of drug-associated interstitial lung disease

    Get PDF
    Symptoms of drug-associated interstitial lung disease (ILD) are nonspecific and can be difficult to distinguish from a number of illnesses that commonly occur in patients with non-small-cell lung cancer (NSCLC) on therapy. Identification of drug involvement and differentiation from other illnesses is problematic, although radiological manifestations and clinical tests enable many of the alternative causes of symptoms in advanced NSCLC to be excluded. In lung cancer patients, high-resolution computed tomography (HRCT) is more sensitive than a chest radiograph in evaluating the severity and progression of parenchymal lung disease. Indeed, the use of HRCT imaging has led to the recognition of many distinct patterns of lung involvement and, along with clinical signs and symptoms, helps to predict both outcome and response to treatment. This manuscript outlines the radiology of drug-associated ILD and its differential diagnosis in NSCLC. An algorithm that uses clinical tests to exclude alternative diagnoses is also described

    Pathogenic huntingtin inhibits fast axonal transport by activating JNK3 and phosphorylating kinesin

    Get PDF
    Author Posting. © The Author(s), 2009. This is the author's version of the work. It is posted here by permission of Nature America for personal use, not for redistribution. The definitive version was published in Nature Neuroscience 12 (2009): 864-871, doi:10.1038/nn.2346.Selected vulnerability of neurons in Huntington’s disease (HD) suggests alterations in a cellular process particularly critical for neuronal function. Supporting this idea, pathogenic Htt (polyQ-Htt) inhibits fast axonal transport (FAT) in various cellular and animal HD models (mouse and squid), but the molecular basis of this effect remains unknown. Here we show that polyQ-Htt inhibits FAT through a mechanism involving activation of axonal JNK. Accordingly, increased activation of JNK was observed in vivo in cellular and animal HD models. Additional experiments indicate that polyQ-Htt effects on FAT are mediated by the neuron-specific JNK3, and not ubiquitously expressed JNK1, providing a molecular basis for neuron-specific pathology in HD. Mass spectrometry identified a residue in the kinesin-1 motor domain phosphorylated by JNK3, and this modification reduces kinesin-1 binding to microtubules. These data identify JNK3 as a critical mediator of polyQ-Htt toxicity and provides a molecular basis for polyQ-Htt-induced inhibition of FAT.This work was supported by 2007/2008 MBL summer fellowship to GM; an HDSA grant to GM; NIH grants MH066179 to GB; and ALSA, Muscular Dystrophy Association, and NIH (NS23868, NS23320, NS41170) grants to STB

    TRY plant trait database - enhanced coverage and open access

    Get PDF
    Plant traits-the morphological, anatomical, physiological, biochemical and phenological characteristics of plants-determine how plants respond to environmental factors, affect other trophic levels, and influence ecosystem properties and their benefits and detriments to people. Plant trait data thus represent the basis for a vast area of research spanning from evolutionary biology, community and functional ecology, to biodiversity conservation, ecosystem and landscape management, restoration, biogeography and earth system modelling. Since its foundation in 2007, the TRY database of plant traits has grown continuously. It now provides unprecedented data coverage under an open access data policy and is the main plant trait database used by the research community worldwide. Increasingly, the TRY database also supports new frontiers of trait-based plant research, including the identification of data gaps and the subsequent mobilization or measurement of new data. To support this development, in this article we evaluate the extent of the trait data compiled in TRY and analyse emerging patterns of data coverage and representativeness. Best species coverage is achieved for categorical traits-almost complete coverage for 'plant growth form'. However, most traits relevant for ecology and vegetation modelling are characterized by continuous intraspecific variation and trait-environmental relationships. These traits have to be measured on individual plants in their respective environment. Despite unprecedented data coverage, we observe a humbling lack of completeness and representativeness of these continuous traits in many aspects. We, therefore, conclude that reducing data gaps and biases in the TRY database remains a key challenge and requires a coordinated approach to data mobilization and trait measurements. This can only be achieved in collaboration with other initiatives

    Glucose-Insulin Therapy, Plasma Substrate Levels and Cardiac Recovery After Cardiac Ischemic Events

    Get PDF
    INTRODUCTION: The potential usefulness of glucose-insulin therapy relies to a large extent on the premise that it prevents hyperglycemia and hyperlipidemia following cardiac ischemic events. METHODS: In this review we evaluate the literature concerning plasma glucose and free fatty acids levels during and following cardiac ischemic events. RESULTS: The data indicate that hyperlipidemia and hyperglycemia most likely occur during acute coronary ischemic syndromes in the conscious state (e.g. acute myocardial infarction) and less so during reperfusion following CABG reperfusion. This is in accordance with observations that glucose-insulin therapy during early reperfusion post CABG may actually cause hypolipidemia, because substantial hyperlipidemia does not appear to occur during that stage of cardiac surgery. DISCUSSION: Considering recent data indicating that hypolipidemia may be detrimental for cardiac function, we propose that free fatty acid levels during reperfusion post CABG with the adjunct glucose-insulin therapy need to be closely monitored. CONCLUSION: From a clinical point of view, a strategy directed at monitoring and thereafter maintaining plasma substrate levels in the normal range for both glucose (4-6 mM) and FFA (0.2-0.6 mM) as well as stimulation of glucose oxidation, promises to be the most optimal metabolic reperfusion treatment following cardiac ischemic episodes. Future (preclinical and subsequently clinical) investigations are required to investigate whether the combination of glucose-insulin therapy with concomitant lipid administration may be beneficial in the setting of reperfusion post CAB
    corecore