166 research outputs found
Hopf algebras: motivations and examples
This paper provides motivation as well as a method of construction for Hopf
algebras, starting from an associative algebra. The dualization technique
involved relies heavily on the use of Sweedler's dual
Approximate substitutions and the normal ordering problem
In this paper, we show that the infinite generalised Stirling matrices
associated with boson strings with one annihilation operator are projective
limits of approximate substitutions, the latter being characterised by a finite
set of algebraic equations
Definite integrals and operational methods
An operatorial method, already employed to formulate a generalization of the
Ramanujan master theorem, is applied to the evaluation of integrals of various
type. This technique provide a very flexible and powerful tool yielding new
results encompassing various aspects of the special function theory.Comment: 9 pages; minor changes to match published versio
Renormalization group-like proof of the universality of the Tutte polynomial for matroids
In this paper we give a new proof of the universality of the Tutte polynomial
for matroids. This proof uses appropriate characters of Hopf algebra of
matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra
characters are solutions of some differential equations which are of the same
type as the differential equations used to describe the renormalization group
flow in quantum field theory. This approach allows us to also prove, in a
different way, a matroid Tutte polynomial convolution formula published by
Kook, Reiner and Stanton (1999). This FPSAC contribution is an extended
abstract.Comment: 12 pages, 3 figures, conference proceedings, 25th International
Conference on Formal Power Series and Algebraic Combinatorics, Paris, France,
June 201
Statistics on Graphs, Exponential Formula and Combinatorial Physics
The concern of this paper is a famous combinatorial formula known under the
name "exponential formula". It occurs quite naturally in many contexts
(physics, mathematics, computer science). Roughly speaking, it expresses that
the exponential generating function of a whole structure is equal to the
exponential of those of connected substructures. Keeping this descriptive
statement as a guideline, we develop a general framework to handle many
different situations in which the exponential formula can be applied
Generalized Bargmann functions, their growth and von Neumann lattices
Generalized Bargmann representations which are based on generalized coherent
states are considered. The growth of the corresponding analytic functions in
the complex plane is studied. Results about the overcompleteness or
undercompleteness of discrete sets of these generalized coherent states are
given. Several examples are discussed in detail.Comment: 9 pages, changes with respect to previous version: typos removed,
improved presentatio
- …