4,699 research outputs found
Recovering the stationary phase condition for accurately obtaining scattering and tunneling times
The stationary phase method is often employed for computing tunneling {\em
phase} times of analytically-continuous {\em gaussian} or infinite-bandwidth
step pulses which collide with a potential barrier. The indiscriminate
utilization of this method without considering the barrier boundary effects
leads to some misconceptions in the interpretation of the phase times. After
reexamining the above barrier diffusion problem where we notice the wave packet
collision necessarily leads to the possibility of multiple reflected and
transmitted wave packets, we study the phase times for tunneling/reflecting
particles in a framework where an idea of multiple wave packet decomposition is
recovered. To partially overcome the analytical incongruities which rise up
when tunneling phase time expressions are obtained, we present a theoretical
exercise involving a symmetrical collision between two identical wave packets
and a one dimensional squared potential barrier where the scattered wave
packets can be recomposed by summing the amplitudes of simultaneously reflected
and transmitted waves.Comment: 32 pages, 5 figures, 1 tabl
Uric acid enhances longevity and endurance and protects the brain against ischemia
Among mammals, there is a positive correlation between serum uric acid (UA) levels and life span. Humans have high levels of UA because they lack a functional urate oxidase (UOX) enzyme that is present in shorter lived mammals. Here, we show that male and female mice with UOX haploinsufficiency exhibit an age-related elevation of UA levels, and that the life span of female but not male UOX+/− mice is significantly increased compared to wild-type mice. Serum UA levels are elevated in response to treadmill exercise in UOX+/− mice, but not wild-type mice, and the endurance of the UOX+/− mice is significantly greater than wild-type mice. UOX+/− mice exhibit elevated levels of brain-derived neurotrophic factor, reduced brain damage and improved functional outcome in a model of focal ischemic stroke. Levels of oxidative protein nitration and lipid peroxidation are reduced in muscle and brain tissues of UOX+/− mice under conditions of metabolic and oxidative stress (running in the case of muscle and ischemia in the case of the brain), consistent with prior evidence that UA can scavenge peroxynitrite and hydroxyl radical. Our findings reveal roles for UA in life span determination, endurance and adaptive responses to brain injury, and suggest novel approaches for protecting cells against injury and for optimizing physical performance.España, Ministerio de Educación, Cultura y Deporte EX2009–091
Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order
We derive the gravitational field and equations of motion of compact binary
systems up to the 5/2 post-Newtonian approximation of general relativity (where
radiation-reaction effects first appear). The approximate post-Newtonian
gravitational field might be used in the problem of initial conditions for the
numerical evolution of binary black-hole space-times. On the other hand we
recover the Damour-Deruelle 2.5PN equations of motion of compact binary
systems. Our method is based on an expression of the post-Newtonian metric
valid for general (continuous) fluids. We substitute into the fluid metric the
standard stress-energy tensor appropriate for a system of two point-like
particles. We remove systematically the infinite self-field of each particle by
means of the Hadamard partie finie regularization.Comment: 41 pages to appear in Physical Review
Detection of high energy X-rays from the galactic center region
Observations of the galactic center region made with the high energy X-ray detector on OSO-8 are discussed. A strong hard X-ray which was detected during these observations from the vicinity of the galactic center are examined. The counting rate spectrum and the photon number spectrum of the flux are determined. Comparisons with the high energy X-ray fluxes observed from sources in the region by others are discussed
Prospects for gravitational-wave observations of neutron-star tidal disruption in neutron-star/black-hole binaries
For an inspiraling neutron-star/black-hole binary (NS/BH), we estimate the
gravity-wave frequency f_td at the onset of NS tidal disruption. We model the
NS as a tidally distorted, homogeneous, Newtonian ellipsoid on a circular,
equatorial geodesic around a Kerr BH. We find that f_td depends strongly on the
NS radius R, and estimate that LIGO-II (ca. 2006-2008) might measure R to 15%
precision at 140 Mpc (about 1 event/yr under current estimates). This suggests
that LIGO-II might extract valuable information about the NS equation of state
from tidal-disruption waves.Comment: RevTeX, 4 pages, 2 EPS figures. Revised slightly, corrected typo
Physical instrumental vetoes for gravitational-wave burst triggers
We present a robust strategy to \emph{veto} certain classes of instrumental
glitches that appear at the output of interferometric gravitational-wave (GW)
detectors.This veto method is `physical' in the sense that, in order to veto a
burst trigger, we make use of our knowledge of the coupling of different
detector subsystems to the main detector output. The main idea behind this
method is that the noise in an instrumental channel X can be \emph{transferred}
to the detector output (channel H) using the \emph{transfer function} from X to
H, provided the noise coupling is \emph{linear} and the transfer function is
\emph{unique}. If a non-stationarity in channel H is causally related to one in
channel X, the two have to be consistent with the transfer function. We
formulate two methods for testing the consistency between the burst triggers in
channel X and channel H. One method makes use of the \emph{null-stream}
constructed from channel H and the \emph{transferred} channel X, and the second
involves cross-correlating the two. We demonstrate the efficiency of the veto
by `injecting' instrumental glitches in the hardware of the GEO 600 detector.
The \emph{veto safety} is demonstrated by performing GW-like hardware
injections. We also show an example application of this method using 5 days of
data from the fifth science run of GEO 600. The method is found to have very
high veto efficiency with a very low accidental veto rate.Comment: Minor changes, To appear in Phys. Rev.
Gravitational waves from inspiralling compact binaries: Energy loss and waveform to second--post-Newtonian order
Gravitational waves generated by inspiralling compact binaries are
investigated to the second--post-Newtonian (2PN) approximation of general
relativity. Using a recently developed 2PN-accurate wave generation formalism,
we compute the gravitational waveform and associated energy loss rate from a
binary system of point-masses moving on a quasi-circular orbit. The crucial new
input is our computation of the 2PN-accurate ``source'' quadrupole moment of
the binary. Tails in both the waveform and energy loss rate at infinity are
explicitly computed. Gravitational radiation reaction effects on the orbital
frequency and phase of the binary are deduced from the energy loss. In the
limiting case of a very small mass ratio between the two bodies we recover the
results obtained by black hole perturbation methods. We find that finite mass
ratio effects are very significant as they increase the 2PN contribution to the
phase by up to 52\%. The results of this paper should be of use when
deciphering the signals observed by the future LIGO/VIRGO network of
gravitational-wave detectors.Comment: 43 pages, LaTeX-ReVTeX, no figures
Gravitational radiation from a particle in circular orbit around a black hole. V. Black-hole absorption and tail corrections
A particle of mass moves on a circular orbit of a nonrotating black
hole of mass . Under the restrictions and , where
is the orbital velocity, we consider the gravitational waves emitted by such a
binary system. We calculate , the rate at which the gravitational
waves remove energy from the system. The total energy loss is given by , where denotes that part of the
gravitational-wave energy which is carried off to infinity, while
denotes the part which is absorbed by the black hole. We show that the
black-hole absorption is a small effect: . We
also compare the wave generation formalism which derives from perturbation
theory to the post-Newtonian formalism of Blanchet and Damour. Among other
things we consider the corrections to the asymptotic gravitational-wave field
which are due to wave-propagation (tail) effects.Comment: ReVTeX, 17 page
General relativistic dynamics of compact binaries at the third post-Newtonian order
The general relativistic corrections in the equations of motion and
associated energy of a binary system of point-like masses are derived at the
third post-Newtonian (3PN) order. The derivation is based on a post-Newtonian
expansion of the metric in harmonic coordinates at the 3PN approximation. The
metric is parametrized by appropriate non-linear potentials, which are
evaluated in the case of two point-particles using a Lorentzian version of an
Hadamard regularization which has been defined in previous works.
Distributional forms and distributional derivatives constructed from this
regularization are employed systematically. The equations of motion of the
particles are geodesic-like with respect to the regularized metric. Crucial
contributions to the acceleration are associated with the non-distributivity of
the Hadamard regularization and the violation of the Leibniz rule by the
distributional derivative. The final equations of motion at the 3PN order are
invariant under global Lorentz transformations, and admit a conserved energy
(neglecting the radiation reaction force at the 2.5PN order). However, they are
not fully determined, as they depend on one arbitrary constant, which reflects
probably a physical incompleteness of the point-mass regularization. The
results of this paper should be useful when comparing theory to the
observations of gravitational waves from binary systems in future detectors
VIRGO and LIGO.Comment: 78 pages, submitted to Phys. Rev. D, with minor modification
Time-frequency detection of Gravitational Waves
We present a time-frequency method to detect gravitational wave signals in
interferometric data. This robust method can detect signals from poorly modeled
and unmodeled sources. We evaluate the method on simulated data containing
noise and signal components. The noise component approximates initial LIGO
interferometer noise. The signal components have the time and frequency
characteristics postulated by Flanagan and Hughes for binary black hole
coalescence. The signals correspond to binaries with total masses between to and with (optimal filter) signal-to-noise ratios of 7
to 12. The method is implementable in real time, and achieves a coincident
false alarm rate for two detectors 1 per 475 years. At this false
alarm rate, the single detector false dismissal rate for our signal model is as
low as 5.3% at an SNR of 10. We expect to obtain similar or better detection
rates with this method for any signal of similar power that satisfies certain
adiabaticity criteria. Because optimal filtering requires knowledge of the
signal waveform to high precision, we argue that this method is likely to
detect signals that are undetectable by optimal filtering, which is at present
the best developed detection method for transient sources of gravitational
waves.Comment: 24 pages, 5 figures, uses REVTE
- …