18,205 research outputs found

    Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies

    Full text link
    In this paper we present Monte-Carlo simulations of Lyman alpha absorption systems which originate in galactic haloes, galaxy discs and dark matter (DM) satellites around big central haloes. It is found that for strong Lyman alpha absorption lines galactic haloes and satellites can explain ~20% and 40% of the line number density of QSO absorption line key project respectively. If big galaxies indeed possess such large numbers of DM satellites and they possess gas, these satellites may play an important role for strong Lyman alpha lines. However the predicted number density of Lyman-limit systems by satellites is \~0.1 (per unit redshift), which is four times smaller than that by halo clouds. Including galactic haloes, satellites and HI discs of spirals, the predicted number density of strong lines can be as much as 60% of the HST result. The models can also predict all of the observed Lyman-limit systems. The average covering factor within 250 kpc/h is estimated to be ~0.36. And the effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the selection effects of selection criteria similar to the imaging and spectroscopic surveys. We simulate mock observations through known QSO lines-of-sight and find that selection effects can statistically tighten the dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in section

    An Analytical Approach to Inhomogeneous Structure Formation

    Full text link
    We develop an analytical formalism that is suitable for studying inhomogeneous structure formation, by studying the joint statistics of dark matter halos forming at two points. Extending the Bond et al. (1991) derivation of the mass function of virialized halos, based on excursion sets, we derive an approximate analytical expression for the ``bivariate'' mass function of halos forming at two redshifts and separated by a fixed comoving Lagrangian distance. Our approach also leads to a self-consistent expression for the nonlinear biasing and correlation function of halos, generalizing a number of previous results including those by Kaiser (1984) and Mo & White (1996). We compare our approximate solutions to exact numerical results within the excursion-set framework and find them to be consistent to within 2% over a wide range of parameters. Our formalism can be used to study various feedback effects during galaxy formation analytically, as well as to simply construct observable quantities dependent on the spatial distribution of objects. A code that implements our method is publicly available at http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added, Figure 2 axis relabele

    Accurate determination of the Lagrangian bias for the dark matter halos

    Get PDF
    We use a new method, the cross power spectrum between the linear density field and the halo number density field, to measure the Lagrangian bias for dark matter halos. The method has several important advantages over the conventional correlation function analysis. By applying this method to a set of high-resolution simulations of 256^3 particles, we have accurately determined the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our result for massive halos with M≄M∗M \ge M_* (M∗M_* is a characteristic non-linear mass) is in very good agreement with the analytical formula of Mo & White for the Lagrangian bias, but the analytical formula significantly underestimates the Lagrangian clustering for the less massive halos $M < M_*. Our simulation result however can be satisfactorily described, with an accuracy better than 15%, by the fitting formula of Jing for Eulerian bias under the assumption that the Lagrangian clustering and the Eulerian clustering are related with a linear mapping. It implies that it is the failure of the Press-Schechter theories for describing the formation of small halos that leads to the inaccuracy of the Mo & White formula for the Eulerian bias. The non-linear mapping between the Lagrangian clustering and the Eulerian clustering, which was speculated as another possible cause for the inaccuracy of the Mo & White formula, must at most have a second-order effect. Our result indicates that the halo formation model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages with 2 figures include

    Formation time distribution of dark matter haloes: theories versus N-body simulations

    Full text link
    This paper uses numerical simulations to test the formation time distribution of dark matter haloes predicted by the analytic excursion set approaches. The formation time distribution is closely linked to the conditional mass function and this test is therefore an indirect probe of this distribution. The excursion set models tested are the extended Press-Schechter (EPS) model, the ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB) model. Three sets of simulations (6 realizations) have been used to investigate the halo formation time distribution for halo masses ranging from dwarf-galaxy like haloes (M=10−3M∗M=10^{-3} M_*, where M∗M_* is the characteristic non-linear mass scale) to massive haloes of M=8.7M∗M=8.7 M_*. None of the models can match the simulation results at both high and low redshift. In particular, dark matter haloes formed generally earlier in our simulations than predicted by the EPS model. This discrepancy might help explain why semi-analytic models of galaxy formation, based on EPS merger trees, under-predict the number of high redshift galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA

    Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions

    Get PDF
    We present an analytic model for the fully nonlinear power spectrum P and bispectrum Q of the cosmological mass density field. The model is based on physical properties of dark matter halos, with the three main model inputs being analytic halo density profiles, halo mass functions, and halo-halo spatial correlations, each of which has been well studied in the literature. We demonstrate that this new model can reproduce the power spectrum and bispectrum computed from cosmological simulations of both an n=-2 scale-free model and a low-density cold dark matter model. To enhance the dynamic range of these large simulations, we use the synthetic halo replacement technique of Ma & Fry (2000a), where the original halos with numerically softened cores are replaced by synthetic halos of realistic density profiles. At high wavenumbers, our model predicts a slope for the nonlinear power spectrum different from the often-used fitting formulas in the literature based on the stable clustering assumption. Our model also predicts a three-point amplitude Q that is scale dependent, in contrast to the popular hierarchical clustering assumption. This model provides a rapid way to compute the mass power spectrum and bispectrum over all length scales where the input halo properties are valid. It also provides a physical interpretation of the clustering properties of matter in the universe.Comment: Final version to appear in the Astrophysical Journal 544 (2000). Minor revisions; 1 additional figure. 25 pages with 6 inserted figure

    The cross-correlation between galaxies of different luminosities and Colors

    Get PDF
    We study the cross-correlation between galaxies of different luminosities and colors, using a sample selected from the SDSS Dr 4. Galaxies are divided into 6 samples according to luminosity, and each of these samples is divided into red and blue subsamples. Projected auto-correlation and cross-correlation is estimated for these subsample. At projected separations r_p > 1\mpch, all correlation functions are roughly parallel, although the correlation amplitude depends systematically on luminosity and color. On r_p < 1\mpch, the auto- and cross-correlation functions of red galaxies are significantly enhanced relative to the corresponding power laws obtained on larger scales. Such enhancement is absent for blue galaxies and in the cross-correlation between red and blue galaxies. We esimate the relative bias factor on scales r > 1\mpch for each subsample using its auto-correlation function and cross-correlation functions. The relative bias factors obtained from different methods are similar. For blue galaxies the luminosity-dependence of the relative bias is strong over the luminosity range probed (-23.0<M_r < -18.0),but for red galaxies the dependence is weaker and becomes insignificant for luminosities below L^*. To examine whether a significant stochastic/nonlinear component exists in the bias relation, we study the ratio R_ij= W_{ii}W_{jj}/W_{ij}^2, where W_{ij} is the projected correlation between subsample i and j. We find that the values of R_ij are all consistent with 1 for all-all, red-red and blue-blue samples, however significantly larger than 1 for red-blue samples. For faint red - faint blue samples the values of R_{ij} are as high as ~ 2 on small scales r_p < 1 \mpch and decrease with increasing r_p.Comment: 25 pages, 18 figures, Accepted for publication in Ap

    The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall

    Get PDF
    We study the reliability of the reconstruction method which uses a modelling of the redshift distortions of the two-point correlation function to estimate the pairwise peculiar velocity dispersion of galaxies. In particular, the dependence of this quantity on different models for the infall velocity is examined for the Las Campanas Redshift Survey. We make extensive use of numerical simulations and of mock catalogs derived from them to discuss the effect of a self-similar infall model, of zero infall, and of the real infall taken from the simulation. The implications for two recent discrepant determinations of the pairwise velocity dispersion for this survey are discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8 pages with 2 figures include

    The cosmological light-cone effect on the power spectrum of galaxies and quasars in wide-field redshift surveys

    Get PDF
    We examine observational consequences of the cosmological light-cone effect on the power spectrum of the distribution of galaxies and quasars from upcoming redshift surveys. First we derive an expression for the power spectrum of cosmological objects in real space on a light cone, PR,linLC(k)P^{\rm LC}_{\rm R,lin}(k), which is exact in linear theory of density perturbations. Next we incorporate corrections for the nonlinear density evolution and redshift-space distortion in the formula in a phenomenological manner which is consistent with recent numerical simulations. On the basis of this formula, we predict the power spectrum of galaxies and quasars on the light cone for future redshift surveys taking account of the selection function properly. We demonstrate that this formula provides a reliable and useful method to compute the power spectrum on the light cone given an evolution model of bias.Comment: 18 pages, 3 figures, to be published in the Astrophysical Journa

    Hidden one-dimensional electronic structure and non-Fermi liquid angle resolved photoemission line shapes of η\eta-Mo4_4O11_{11}

    Get PDF
    We report angle resolved photoemission (ARPES) spectra of η\eta-Mo4_4O11_{11}, a layered metal that undergoes two charge density wave (CDW) transitions at 109 K and 30 K. We have directly observed the ``hidden one-dimensional (hidden-1d)'' Fermi surface and an anisotropic gap opening associated with the 109 K transition, in agreement with the band theoretical description of the CDW transition. In addition, as in other hidden-1d materials such as NaMo6_6O17_{17}, the ARPES line shapes show certain anomalies, which we discuss in terms of non-Fermi liquid physics and possible roles of disorder.Comment: 3 figures; Erratum added to include missed reference

    Decays of J/ψJ/\psi and ψâ€Č\psi^\prime into vector and pseudoscalar meson and the pseudoscalar glueball-qqˉq\bar{q} mixing

    Get PDF
    We introduce a parametrization scheme for J/ψ(ψâ€Č)→VPJ/\psi(\psi^\prime)\to VP where the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation (DOZI) can be parametrized by certain parameters with explicit physical interpretations. This scheme can be used to clarify the glueball-qqˉq\bar{q} mixing within the pseudoscalar mesons. We also include the contributions from the electromagnetic (EM) decays of J/ψJ/\psi and ψâ€Č\psi^\prime via J/ψ(ψâ€Č)→γ∗→VPJ/\psi(\psi^\prime)\to \gamma^*\to VP. Via study of the isospin violated channels, such as J/ψ(ψâ€Č)→ρηJ/\psi(\psi^\prime)\to \rho\eta, ρηâ€Č\rho\eta^\prime, ωπ0\omega\pi^0 and ϕπ0\phi\pi^0, reasonable constraints on the EM decay contributions are obtained. With the up-to-date experimental data for J/ψ(ψâ€Č)→VPJ/\psi(\psi^\prime)\to VP, J/ψ(ψâ€Č)→γPJ/\psi(\psi^\prime)\to \gamma P and P→γγP\to \gamma\gamma, etc, we arrive at a consistent description of the mentioned processes with a minimal set of parameters. As a consequence, we find that there exists an overall suppression of the ψâ€Č→3g\psi^\prime\to 3g form factors, which sheds some light on the long-standing "ρπ\rho\pi puzzle". By determining the glueball components inside the pseudoscalar η\eta and ηâ€Č\eta^\prime in three different glueball-qqˉq\bar{q} mixing schemes, we deduce that the lowest pseudoscalar glueball, if exists, has rather small qqˉq\bar{q} component, and it makes the η(1405)\eta(1405) a preferable candidate for 0−+0^{-+} glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was corrected. There's slight change to the numerical results, while the conclusion is intac
    • 

    corecore