18,205 research outputs found
Low Redshift QSO Lyman alpha Absorption Line Systems Associated with Galaxies
In this paper we present Monte-Carlo simulations of Lyman alpha absorption
systems which originate in galactic haloes, galaxy discs and dark matter (DM)
satellites around big central haloes. It is found that for strong Lyman alpha
absorption lines galactic haloes and satellites can explain ~20% and 40% of the
line number density of QSO absorption line key project respectively. If big
galaxies indeed possess such large numbers of DM satellites and they possess
gas, these satellites may play an important role for strong Lyman alpha lines.
However the predicted number density of Lyman-limit systems by satellites is
\~0.1 (per unit redshift), which is four times smaller than that by halo
clouds. Including galactic haloes, satellites and HI discs of spirals, the
predicted number density of strong lines can be as much as 60% of the HST
result. The models can also predict all of the observed Lyman-limit systems.
The average covering factor within 250 kpc/h is estimated to be ~0.36. And the
effective absorption radius of a galaxy is estimated to be ~150 kpc/h. The
models predict W_r propto rho^{-0.5} L_B^{0.15} (1+z)^{-0.5}. We study the
selection effects of selection criteria similar to the imaging and
spectroscopic surveys. We simulate mock observations through known QSO
lines-of-sight and find that selection effects can statistically tighten the
dependence of line width on projected distance. (abridged)Comment: 23 pages, 9 postscript figures; references updated, minor change in
section
An Analytical Approach to Inhomogeneous Structure Formation
We develop an analytical formalism that is suitable for studying
inhomogeneous structure formation, by studying the joint statistics of dark
matter halos forming at two points. Extending the Bond et al. (1991) derivation
of the mass function of virialized halos, based on excursion sets, we derive an
approximate analytical expression for the ``bivariate'' mass function of halos
forming at two redshifts and separated by a fixed comoving Lagrangian distance.
Our approach also leads to a self-consistent expression for the nonlinear
biasing and correlation function of halos, generalizing a number of previous
results including those by Kaiser (1984) and Mo & White (1996). We compare our
approximate solutions to exact numerical results within the excursion-set
framework and find them to be consistent to within 2% over a wide range of
parameters. Our formalism can be used to study various feedback effects during
galaxy formation analytically, as well as to simply construct observable
quantities dependent on the spatial distribution of objects. A code that
implements our method is publicly available at
http://www.arcetri.astro.it/~evan/GeminiComment: 41 Pages, 11 figures, published in ApJ, 571, 585. Reference added,
Figure 2 axis relabele
Accurate determination of the Lagrangian bias for the dark matter halos
We use a new method, the cross power spectrum between the linear density
field and the halo number density field, to measure the Lagrangian bias for
dark matter halos. The method has several important advantages over the
conventional correlation function analysis. By applying this method to a set of
high-resolution simulations of 256^3 particles, we have accurately determined
the Lagrangian bias, over 4 magnitudes in halo mass, for four scale-free models
with the index n=-0.5, -1.0, -1.5 and -2.0 and three typical CDM models. Our
result for massive halos with ( is a characteristic non-linear
mass) is in very good agreement with the analytical formula of Mo & White for
the Lagrangian bias, but the analytical formula significantly underestimates
the Lagrangian clustering for the less massive halos $M < M_*. Our simulation
result however can be satisfactorily described, with an accuracy better than
15%, by the fitting formula of Jing for Eulerian bias under the assumption that
the Lagrangian clustering and the Eulerian clustering are related with a linear
mapping. It implies that it is the failure of the Press-Schechter theories for
describing the formation of small halos that leads to the inaccuracy of the Mo
& White formula for the Eulerian bias. The non-linear mapping between the
Lagrangian clustering and the Eulerian clustering, which was speculated as
another possible cause for the inaccuracy of the Mo & White formula, must at
most have a second-order effect. Our result indicates that the halo formation
model adopted by the Press-Schechter theories must be improved.Comment: Minor changes; accepted for publication in ApJ (Letters) ; 11 pages
with 2 figures include
Formation time distribution of dark matter haloes: theories versus N-body simulations
This paper uses numerical simulations to test the formation time distribution
of dark matter haloes predicted by the analytic excursion set approaches. The
formation time distribution is closely linked to the conditional mass function
and this test is therefore an indirect probe of this distribution. The
excursion set models tested are the extended Press-Schechter (EPS) model, the
ellipsoidal collapse (EC) model, and the non-spherical collapse boundary (NCB)
model. Three sets of simulations (6 realizations) have been used to investigate
the halo formation time distribution for halo masses ranging from dwarf-galaxy
like haloes (, where is the characteristic non-linear mass
scale) to massive haloes of . None of the models can match the
simulation results at both high and low redshift. In particular, dark matter
haloes formed generally earlier in our simulations than predicted by the EPS
model. This discrepancy might help explain why semi-analytic models of galaxy
formation, based on EPS merger trees, under-predict the number of high redshift
galaxies compared with recent observations.Comment: 7 pages, 5 figures, accepted for publication in MNRA
Deriving the Nonlinear Cosmological Power Spectrum and Bispectrum from Analytic Dark Matter Halo Profiles and Mass Functions
We present an analytic model for the fully nonlinear power spectrum P and
bispectrum Q of the cosmological mass density field. The model is based on
physical properties of dark matter halos, with the three main model inputs
being analytic halo density profiles, halo mass functions, and halo-halo
spatial correlations, each of which has been well studied in the literature. We
demonstrate that this new model can reproduce the power spectrum and bispectrum
computed from cosmological simulations of both an n=-2 scale-free model and a
low-density cold dark matter model. To enhance the dynamic range of these large
simulations, we use the synthetic halo replacement technique of Ma & Fry
(2000a), where the original halos with numerically softened cores are replaced
by synthetic halos of realistic density profiles. At high wavenumbers, our
model predicts a slope for the nonlinear power spectrum different from the
often-used fitting formulas in the literature based on the stable clustering
assumption. Our model also predicts a three-point amplitude Q that is scale
dependent, in contrast to the popular hierarchical clustering assumption. This
model provides a rapid way to compute the mass power spectrum and bispectrum
over all length scales where the input halo properties are valid. It also
provides a physical interpretation of the clustering properties of matter in
the universe.Comment: Final version to appear in the Astrophysical Journal 544 (2000).
Minor revisions; 1 additional figure. 25 pages with 6 inserted figure
The cross-correlation between galaxies of different luminosities and Colors
We study the cross-correlation between galaxies of different luminosities and
colors, using a sample selected from the SDSS Dr 4. Galaxies are divided into 6
samples according to luminosity, and each of these samples is divided into red
and blue subsamples. Projected auto-correlation and cross-correlation is
estimated for these subsample. At projected separations r_p > 1\mpch, all
correlation functions are roughly parallel, although the correlation amplitude
depends systematically on luminosity and color. On r_p < 1\mpch, the auto- and
cross-correlation functions of red galaxies are significantly enhanced relative
to the corresponding power laws obtained on larger scales. Such enhancement is
absent for blue galaxies and in the cross-correlation between red and blue
galaxies. We esimate the relative bias factor on scales r > 1\mpch for each
subsample using its auto-correlation function and cross-correlation functions.
The relative bias factors obtained from different methods are similar. For blue
galaxies the luminosity-dependence of the relative bias is strong over the
luminosity range probed (-23.0<M_r < -18.0),but for red galaxies the dependence
is weaker and becomes insignificant for luminosities below L^*. To examine
whether a significant stochastic/nonlinear component exists in the bias
relation, we study the ratio R_ij= W_{ii}W_{jj}/W_{ij}^2, where W_{ij} is the
projected correlation between subsample i and j. We find that the values of
R_ij are all consistent with 1 for all-all, red-red and blue-blue samples,
however significantly larger than 1 for red-blue samples. For faint red - faint
blue samples the values of R_{ij} are as high as ~ 2 on small scales r_p < 1
\mpch and decrease with increasing r_p.Comment: 25 pages, 18 figures, Accepted for publication in Ap
The Pairwise Peculiar Velocity Dispersion of Galaxies: Effects of the Infall
We study the reliability of the reconstruction method which uses a modelling
of the redshift distortions of the two-point correlation function to estimate
the pairwise peculiar velocity dispersion of galaxies. In particular, the
dependence of this quantity on different models for the infall velocity is
examined for the Las Campanas Redshift Survey. We make extensive use of
numerical simulations and of mock catalogs derived from them to discuss the
effect of a self-similar infall model, of zero infall, and of the real infall
taken from the simulation. The implications for two recent discrepant
determinations of the pairwise velocity dispersion for this survey are
discussed.Comment: minor changes in the discussion; accepted for publication in ApJ; 8
pages with 2 figures include
The cosmological light-cone effect on the power spectrum of galaxies and quasars in wide-field redshift surveys
We examine observational consequences of the cosmological light-cone effect
on the power spectrum of the distribution of galaxies and quasars from upcoming
redshift surveys. First we derive an expression for the power spectrum of
cosmological objects in real space on a light cone, , which is exact in linear theory of density perturbations. Next we
incorporate corrections for the nonlinear density evolution and redshift-space
distortion in the formula in a phenomenological manner which is consistent with
recent numerical simulations. On the basis of this formula, we predict the
power spectrum of galaxies and quasars on the light cone for future redshift
surveys taking account of the selection function properly. We demonstrate that
this formula provides a reliable and useful method to compute the power
spectrum on the light cone given an evolution model of bias.Comment: 18 pages, 3 figures, to be published in the Astrophysical Journa
Hidden one-dimensional electronic structure and non-Fermi liquid angle resolved photoemission line shapes of -MoO
We report angle resolved photoemission (ARPES) spectra of
-MoO, a layered metal that undergoes two charge density wave
(CDW) transitions at 109 K and 30 K. We have directly observed the ``hidden
one-dimensional (hidden-1d)'' Fermi surface and an anisotropic gap opening
associated with the 109 K transition, in agreement with the band theoretical
description of the CDW transition. In addition, as in other hidden-1d materials
such as NaMoO, the ARPES line shapes show certain anomalies, which
we discuss in terms of non-Fermi liquid physics and possible roles of disorder.Comment: 3 figures; Erratum added to include missed reference
Decays of and into vector and pseudoscalar meson and the pseudoscalar glueball- mixing
We introduce a parametrization scheme for where
the effects of SU(3) flavor symmetry breaking and doubly OZI-rule violation
(DOZI) can be parametrized by certain parameters with explicit physical
interpretations. This scheme can be used to clarify the glueball-
mixing within the pseudoscalar mesons. We also include the contributions from
the electromagnetic (EM) decays of and via
. Via study of the isospin violated
channels, such as , ,
and , reasonable constraints on the EM decay
contributions are obtained. With the up-to-date experimental data for
, and , etc, we arrive at a consistent description of the mentioned
processes with a minimal set of parameters. As a consequence, we find that
there exists an overall suppression of the form factors,
which sheds some light on the long-standing " puzzle". By determining
the glueball components inside the pseudoscalar and in
three different glueball- mixing schemes, we deduce that the lowest
pseudoscalar glueball, if exists, has rather small component, and it
makes the a preferable candidate for glueball.Comment: Revised version to appear on J. Phys. G; An error in the code was
corrected. There's slight change to the numerical results, while the
conclusion is intac
- âŠ