182 research outputs found

    Coulomb suppression of the stellar enhancement factor

    Get PDF
    It is commonly assumed that reaction measurements for astrophysics should be preferably performed in the direction of positive Q value to minimize the impact of the stellar enhancement factor, i.e. the difference between the laboratory rate and the actual stellar rate. We show that the stellar effects can be minimized in the charged particle channel, even when the reaction Q value is negative. As a demonstration, the cross section of the astrophysically relevant 85Rb(p,n)85Sr reaction has been measured by activation between 2.16 < Ec.m. < 3.96 MeV and the astrophysical reaction rate for (p,n) as well as (n,p) is directly inferred from the data. The presented arguments are also relevant for other alpha and proton-induced reactions in the p and rp processes. Additionally, our results confirm a previously derived modification of a global optical proton potential.Comment: submitted to PR

    Precise half-life measurement of the 10 h isomer in 154Tb

    Full text link
    The precise knowledge of the half-life of the reaction product is of crucial importance for a nuclear reaction cross section measurement carried out with the activation technique. The cross section of the 151Eu(alpha,n)154Tb reaction has been measured recently using the activation method, however, the half-life of the 10 h isomer in 154Tb has a relatively high uncertainty and ambiguous values can be found in the literature. Therefore, the precise half-life of the isomeric state has been measured and found to be 9.994 h +- 0.039 h. With careful analysis of the systematic errors, the uncertainty of this half-life value has been significantly reduced.Comment: Accepted for publication in Nuclear Physics

    70Ge(p,gamma)71As and 76Ge(p,n)76As cross sections for the astrophysical p process: sensitivity of the optical proton potential at low energies

    Get PDF
    The cross sections of the 70Ge(p,gamma)71As and 76Ge(p,n)76As reactions have been measured with the activation method in the Gamow window for the astrophysical p process. The experiments were carried out at the Van de Graaff and cyclotron accelerators of ATOMKI. The cross sections have been derived by measuring the decay gamma-radiation of the reaction products. The results are compared to the predictions of Hauser-Feshbach statistical model calculations using the code NON-SMOKER. Good agreement between theoretical and experimental S factors is found. Based on the new data, modifications of the optical potential used for low-energy protons are discussed.Comment: Accepted for publication in Phys. Rev.

    High precision half-life measurement of 95^{95}Ru, 95^{95}Tc and 95m^{95m}Tc with γ\gamma-spectroscopy

    Full text link
    The precise knowledge of the half-life of the reaction product is of crucial importance for a nuclear reaction cross section measurement carried out with the activation technique. The cross section of the 92^{92}Mo(α\alpha,n)95^{95}Ru reaction was measured recently using this experimental approach. The preliminary results indicated that the literature half-life of 95^{95}Ru, derived about half a century ago, is overestimated. Therefore, the half-lives of 95^{95}Ru and its daughter isotope 95^{95}Tc and 95m^{95m}Tc have been measured with high precision using γ\gamma-spectroscopy. The results are t1/2_{1/2}=1.6033 ±\pm 0.0044 h for 95^{95}Ru, t1/2_{1/2} = 19.258 ±\pm 0.026 h for 95^{95}Tc and t1/2_{1/2} = 61.96 ±\pm 0.24 d for 95m^{95m}Tc. The precision of the half-life values has been increased, consequently the recently measured 92^{92}Mo(α\alpha,n)95^{95}Ru activation cross section will become more precise

    Direct study of the alpha-nucleus optical potential at astrophysical energies using the 64Zn(p,alpha)61Cu reaction

    Get PDF
    In the model calculations of heavy element nucleosynthesis processes the nuclear reaction rates are taken from statistical model calculations which utilize various nuclear input parameters. It is found that in the case of reactions involving alpha particles the calculations bear a high uncertainty owing to the largely unknown low energy alpha-nucleus optical potential. Experiments are typically restricted to higher energies and therefore no direct astrophysical consequences can be drawn. In the present work a (p,alpha) reaction is used for the first time to study the alpha-nucleus optical potential. The measured 64Zn(p,alpha)61Cu cross section is uniquely sensitive to the alpha-nucleus potential and the measurement covers the whole astrophysically relevant energy range. By the comparison to model calculations, direct evidence is provided for the incorrectness of global optical potentials used in astrophysical models.Comment: Accepted for publication in Physical Review C as a Rapid Communicatio

    Cross section measurement of the astrophysically important 17O(p,gamma)18F reaction in a wide energy range

    Get PDF
    The 17O(p,g)18F reaction plays an important role in hydrogen burning processes in different stages of stellar evolution. The rate of this reaction must therefore be known with high accuracy in order to provide the necessary input for astrophysical models. The cross section of 17O(p,g)18F is characterized by a complicated resonance structure at low energies. Experimental data, however, is scarce in a wide energy range which increases the uncertainty of the low energy extrapolations. The purpose of the present work is therefore to provide consistent and precise cross section values in a wide energy range. The cross section is measured using the activation method which provides directly the total cross section. With this technique some typical systematic uncertainties encountered in in-beam gamma-spectroscopy experiments can be avoided. The cross section was measured between 500 keV and 1.8 MeV proton energies with a total uncertainty of typically 10%. The results are compared with earlier measurements and it is found that the gross features of the 17O(p,g)18F excitation function is relatively well reproduced by the present data. Deviation of roughly a factor of 1.5 is found in the case of the total cross section when compared with the only one high energy dataset. At the lowest measured energy our result is in agreement with two recent datasets within one standard deviation and deviates by roughly two standard deviations from a third one. An R-matrix analysis of the present and previous data strengthen the reliability of the extrapolated zero energy astrophysical S-factor. Using an independent experimental technique, the literature cross section data of 17O(p,g)18F is confirmed in the energy region of the resonances while lower direct capture cross section is recommended at higher energies. The present dataset provides a constraint for the theoretical cross sections.Comment: Accepted for publication in Phys. Rev. C. Abstract shortened in order to comply with arxiv rule
    corecore