427 research outputs found

    Mott Insulator to Superfluid transition in Bose-Bose mixtures in a two-dimensional lattice

    Full text link
    We perform a numeric study (Worm algorithm Monte Carlo simulations) of ultracold two-component bosons in two-dimensional optical lattices. We study how the Mott insulator to superfluid transition is affected by the presence of a second superfluid bosonic species. We find that, at fixed interspecies interaction, the upper and lower boundaries of the Mott lobe are differently modified. The lower boundary is strongly renormalized even for relatively low filling factor of the second component and moderate (interspecies) interaction. The upper boundary, instead, is affected only for large enough filling of the second component. Whereas boundaries are renormalized we find evidence of polaron-like excitations. Our results are of interest for current experimental setups.Comment: 4 pages, 3 figures, accepted as PRA Rapid Communicatio

    Inversion of SAR data in active volcanic areas by optimization techniques

    Get PDF
    The inversion problem concerns the identification of parameters of a volcanic source causing observable changes in ground deformation data recorded in volcanic areas. In particular, this paper deals with the inversion of ground deformation measured by using SAR (Synthetic Aperture Radar) interferometry and an inversion approach formulated in terms of an optimization problem is proposed. Based on this inversion scheme, it is shown that the problem of inverting ground deformation data in terms of a single source, of Mogi or Okada type, is numerically well conditioned. In the paper, two case studies of inverting actual SAR data recorded on Mt Etna during eruptions occurring in 1998 and 2001 are investigated, showing the suitability of the proposed technique

    Computed Tomography analysis of damage in composites subjected to impact loading

    Get PDF
    The composites, used in the transportation engineering, include different classes with a wide range of materials and properties within each type. The following different typologies of composites have been investigated: laminated composites, PVC foam sandwiches, aluminium foam and honeycomb sandwiches. Aim of this paper was the analysis of low-velocity impact response of such composites and the investigation of their collapse modes. Low velocity impact tests were carried out by a drop test machine in order to investigate and compare their structural response in terms of energy absorption capacity. The failure mode and the internal damage of the impacted composites have been, also, investigated using 3D Computed Tomography

    Definition of the linearity loss of the surface temperature in static tensile tests

    Get PDF
    Static traction tests on material samples for mechanical constructions have pointed out the loss of linearity of the specimen surface temperature with the applied load. This phenomenon is due to the heat generation caused by the local microplasticizations which carry the material to deviate from its behavior, perfectly thermoelastic. The identification of the static load which determines the loss of linearity under the temperature stress becomes extremely important to define an initial dynamic characterization of the material. The temperature variations that can be read during the static loads applications are often very limited (a few tenths of degree for every 100 MPa in steels) and they require the use of special temperature sensors able to measure the temperature variations. The experience acquired in such analysis highlighted that, dealing with highly accurate sensors or with particular materials, the identification of the first loss of linearity can be influenced by the investigator himself mainly for the above mentioned limited temperature variations which can lead to incorrect estimations, sometimes really significant. Checking the validity and the above mentioned observations on the different steels, this work proposes the application of the autocorrelation function to the data collected during the application of a static load in order to make the results of the thermal analysis free from the sensitivity of the operator and also to make the result as objective as possible in order to detect the time of the loss of linearity of the temperature-time function

    Fatigue characterization of mechanical components in service

    Get PDF
    The quickly identify of fatigue limit of a mechanical component with good approximation is currently a significant practical problem not yet resolved in a satisfactory way. Generally, for a mechanical component, the fatigue strength reduction factor ( ? i) is difficult to evaluate especially when it is in service. In this paper, the procedures for crack paths individuation and consequently damage evaluation (adopted in laboratory for stressed specimens with planned load histories) are applied to mechanical components, already failed during service. The energy parameters, proposed by the authors for the evaluation of the fatigue behavior of the materials [1-5], are defined on specimens derived from a flange bolts. The flange connecting pipes at high temperature and pressure. Due to the loss of the seal, the bolts have been subjected to a hot flow steam addition to the normal stress. The numerical analysis coupled experimental analysis (measurement of surface temperature during static and dynamic tests of specimens taken from damaged tie rods), has helped to determine the causes of failure of the tie rods. The determination of an energy parameter for the evaluation of the damage showed that factors related to the heat release of the material (loaded) may also help to understand the causes of failure of mechanical components

    Description of Bocchus irwini sp. nov. from Madagascar (Hymenoptera Dryinidae)

    Get PDF
    Bocchus irwini sp. nov. is described from a male collected in Analagnambe forest, Mahajanga Province, Madagascar. The new species is similar to Bocchus watshami Olmi 1987. Keys to the Afrotropical species of Bocchus are modified to include the new species

    Modelling ground deformations in volcanic areas by using SAR interferograms

    Get PDF
    The inversion problem dealt with is the identification of the parameters of a magma-filled dike which causes observable changes in ground deformation data. It is supposed that ground deformation data are measured by using the SAR (Synthetic Aperture Radar) Interferometry technique. The inversion approach, which is carried out by a systematic search technique based on the Simulated Annealing (SA) optimization algorithm, guarantees a high degree of accuracy. The results given in the paper are supported by experiments carried out using an interactive software tool developed ad hoc, which allows both direct and inverse modeling of SAR interferometric data related to the opening of a crack at the beginning and throughout a volcanic activity episode

    The 2013 February 17 sunquake in the context of the active region's magnetic field configuration

    Get PDF
    © 2017. The American Astronomical Society. All rights reserved. Sunquakes are created by the hydrodynamic response of the lower atmosphere to a sudden deposition of energy and momentum. In this study, we investigate a sunquake that occurred in NOAA active region 11675 on 2013 February 17. Observations of the corona, chromosphere, and photosphere are brought together for the first time with a nonlinear force-free model of the active region's magnetic field in order to probe the magnetic environment in which the sunquake was initiated. We find that the sunquake was associated with the destabilization of a flux rope and an associated M-class GOES flare. Active region 11675 was in its emergence phase at the time of the sunquake and photospheric motions caused by the emergence heavily modified the flux rope and its associated quasi-separatrix layers, eventually triggering the flux rope's instability. The flux rope was surrounded by an extended envelope of field lines rooted in a small area at the approximate position of the sunquake. We argue that the configuration of the envelope, by interacting with the expanding flux rope, created a “magnetic lens” that may have focussed energy on one particular location of the photosphere, creating the necessary conditions for the initiation of the sunquake

    fatigue assessment by energy approach during tensile and fatigue tests on ppgf35

    Get PDF
    Abstract: Today, lightweight and low cost components can be obtained with short fibre reinforced plastics. The recyclable nature of these materials by comparison to thermoset matrixes composites is also clearly appealing. This paper investigates static and fatigue behaviour for a glass-fibre-reinforced polypropylene composite. Tensile tests were carried out using DIC and IR Camera. Stress vs strain curves and temperature evolution associated to the applied tensile stress were determined. The trend of the surface temperature of the specimen during fatigue tests was analyzed

    Assessment of Damage Evolution in Sandwich Composite Material Subjected to Repeated Impacts by Means Optical Measurements

    Get PDF
    Abstract In the last decade, sandwich composite materials have had an increasing use in design of racing boats. The main reasons are: higher strength-weight ratio, low density, excellent durability and versatility. The knowledge of impact response is very important to design racing boats. The aim of the present study is the investigation of absorbing impact energy ability of a sandwich composite material used for offshore vessels in UIM (Unione Internationale Motonautique) Championship. The material analysed in this study is a sandwich manufactured with hand lay-up technique. In the first phase, the damage assessment of single impact has been studied with an optical measurement technique. In a second phase, the damage evaluation due to repeated impacts has been analysed with the similar technique
    • …
    corecore