673 research outputs found
Multipartite entanglement characterization of a quantum phase transition
A probability density characterization of multipartite entanglement is tested
on the one-dimensional quantum Ising model in a transverse field. The average
and second moment of the probability distribution are numerically shown to be
good indicators of the quantum phase transition. We comment on multipartite
entanglement generation at a quantum phase transition.Comment: 10 pages, 6 figures, final versio
Entanglement and interference between different degrees of freedom of photons states
In this paper, photonic entanglement and interference are described and
analyzed with the language of quantum information process. Correspondingly, a
photon state involving several degrees of freedom is represented in a new
expression based on the permutation symmetry of bosons. In this expression,
each degree of freedom of a single photon is regarded as a qubit and operations
on photons as qubit gates. The two-photon Hong-Ou-Mandel interference is well
interpreted with it. Moreover, the analysis reveals the entanglement between
different degrees of freedom in a four-photon state from parametric down
conversion, even if there is no entanglement between them in the two-photon
state. The entanglement will decrease the state purity and photon interference
visibility in the experiments on a four-photon polarization state.Comment: 11 pages and 2 figure
Demonstration of multi-channel 80 Gbit/s integrated transmitter and receiver for wavelength-division multiplexing passive optical network and fronthauling applications
The performance evaluation of a multi-channel transmitter that employs an arrayed reflective electroabsorption modulator-based photonic integrated circuit and a low-power driver array in conjunction with a multi-channel receiver incorporating a pin photodiode array and integrated arrayed waveguide grating is reported. Due to their small footprint, low power consumption and potential low cost, these devices are attractive solutions for future mobile fronthaul and next generation optical access networks. A BER performance of <10(-9) at 10.3 Gbit/s per channel is achieved over 25 km of standard single mode fibre. The transmitter/receiver combination can achieve an aggregate bit rate of 82.4 Gbit/s when eight channels are active
Studies of group velocity reduction and pulse regeneration with and without the adiabatic approximation
We present a detailed semiclassical study on the propagation of a pair of
optical fields in resonant media with and without adiabatic approximation. In
the case of near and on resonance excitation, we show detailed calculation,
both analytically and numerically, on the extremely slowly propagating probe
pulse and the subsequent regeneration of a pulse via a coupling laser. Further
discussions on the adiabatic approximation provide many subtle understandings
of the process including the effect on the band width of the regenerated
optical field. Indeed, all features of the optical pulse regeneration and most
of the intricate details of the process can be obtained with the present
treatment without invoke a full field theoretical method. For very far off
resonance excitation, we show that the analytical solution is nearly detuning
independent, a surprising result that is vigorously tested and compared to
numerical calculations with very good agreement.Comment: 13 pages, 15 figures, submitted to Phys. Rev.
Universal Cubic Eigenvalue Repulsion for Random Normal Matrices
Random matrix models consisting of normal matrices, defined by the sole
constraint , will be explored. It is shown that cubic
eigenvalue repulsion in the complex plane is universal with respect to the
probability distribution of matrices. The density of eigenvalues, all
correlation functions, and level spacing statistics are calculated. Normal
matrix models offer more probability distributions amenable to analytical
analysis than complex matrix models where only a model wth a Gaussian
distribution are solvable. The statistics of numerically generated eigenvalues
from gaussian distributed normal matrices are compared to the analytical
results obtained and agreement is seen.Comment: 15 pages, 2 eps figures. to appar in Physical Review
Suppression of peripheral pain by blockade of voltage-gated calcium 2.2 channels in nociceptors induces RANKL and impairs recovery from inflammatory arthritis in a mouse model
Objective: A hallmark of rheumatoid arthritis (RA) is the chronic pain that accompanies the inflammation and joint deformation. Patients with RA rate pain relief with highest priority, however, few studies have addressed the efficacy and safety of therapies directed specifically towards pain pathways. The conotoxin MVIIA (Prialt/Ziconotide) is used in humans to alleviate persistent pain syndromes because it specifically blocks the CaV 2.2 voltage-gated calcium channel, which mediates the release of neurotransmitters and proinflammatory mediators from peripheral nociceptor nerve terminals. The purpose of this study was to investigate whether block of CaV 2.2 can suppress arthritic pain, and to examine the progression of induced arthritis during persistent CaV 2.2 blockade. Methods: Transgenic mice (Tg-MVIIA) expressing a membrane-tethered form of the {Omega}-conotoxin MVIIA, under the control of a nociceptor-specific gene, were employed. These mice were subjected to unilateral induction of joint inflammation using the Antigen- and Collagen-Induced Arthritis (ACIA) model. Results: We observed that CaV 2.2-blockade mediated by t-MVIIA effectively suppressed arthritis-induced pain; however, in contrast to their wild-type littermates, which ultimately regained use of their injured joint as inflammation subsides, Tg-MVIIA mice showed continued inflammation with an up-regulation of the osteoclast activator RANKL and concomitant joint and bone destruction. Conclusion: Altogether, our results indicate that alleviation of peripheral pain by blockade of CaV 2.2- mediated calcium influx and signaling in nociceptor sensory neurons, impairs recovery from induced arthritis and point to the potentially devastating effects of using CaV 2.2 channel blockers as analgesics during inflammation
From Storage and Retrieval of Pulses to Adiabatons
We investigate whether it is possible to store and retrieve the intense probe
pulse from a -type homogeneous medium of cold atoms. Through numerical
simulations we show that it is possible to store and retrieve the probe pulse
which are not necessarily weak. As the intensity of the probe pulse increases,
the retrieved pulse remains a replica of the original pulse, however there is
overall broadening and loss of the intensity. These effects can be understood
in terms of the dependence of absorption on the intensity of the probe. We
include the dynamics of the control field, which becomes especially important
as the intensity of the probe pulse increases. We use the theory of adiabatons
[Grobe {\it et al.} Phys. Rev. Lett. {\bf 73}, 3183 (1994)] to understand the
storage and retrieval of light pulses at moderate powers.Comment: 15 pages, 7 figures, typed in RevTe
A mapping approach to synchronization in the "Zajfman trap": stability conditions and the synchronization mechanism
We present a two particle model to explain the mechanism that stabilizes a
bunch of positively charged ions in an "ion trap resonator" [Pedersen etal,
Phys. Rev. Lett. 87 (2001) 055001]. The model decomposes the motion of the two
ions into two mappings for the free motion in different parts of the trap and
one for a compressing momentum kick. The ions' interaction is modelled by a
time delay, which then changes the balance between adjacent momentum kicks.
Through these mappings we identify the microscopic process that is responsible
for synchronization and give the conditions for that regime.Comment: 12 pages, 9 figures; submitted to Phys Rev
Spatial evolution of short pulses under coherent population trapping
Spatial and temporal evolution is studied of two powerful short laser pulses
having different wavelengths and interacting with a dense three-level
Lambda-type optical medium under coherent population trapping. A general case
of unequal oscillator strengths of the transitions is considered. Durations of
the probe pulse and the coupling pulse () are assumed to be
shorter than any of the relevant atomic relaxation times. We propose analytical
and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger
equations and reduced wave equations in the adiabatic limit with the account of
the first non-adiabatic correction. The adiabaticity criterion is also
discussed with the account of the pulse propagation. The dynamics of
propagation is found to be strongly dependent on the ratio of the transition
oscillator strengths. It is shown that envelopes of the pulses slightly change
throughout the medium length at the initial stage of propagation. This distance
can be large compared to the one-photon resonant absorption length. Eventually,
the probe pulse is completely reemitted into the coupling pulse during
propagation. The effect of localization of the atomic coherence has been
observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84},
5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review
Entanglement of electrons in interacting molecules
Quantum entanglement is a concept commonly used with reference to the
existence of certain correlations in quantum systems that have no classical
interpretation. It is a useful resource to enhance the mutual information of
memory channels or to accelerate some quantum processes as, for example, the
factorization in Shor's Algorithm. Moreover, entanglement is a physical
observable directly measured by the von Neumann entropy of the system. We have
used this concept in order to give a physical meaning to the electron
correlation energy in systems of interacting electrons. The electronic
correlation is not directly observable, since it is defined as the difference
between the exact ground state energy of the many--electrons Schroedinger
equation and the Hartree--Fock energy. We have calculated the correlation
energy and compared with the entanglement, as functions of the nucleus--nucleus
separation using, for the hydrogen molecule, the Configuration Interaction
method. Then, in the same spirit, we have analyzed a dimer of ethylene, which
represents the simplest organic conjugate system, changing the relative
orientation and distance of the molecules, in order to obtain the configuration
corresponding to maximum entanglement.Comment: 15 pages, 7 figures, standard late
- …