57 research outputs found

    Small x divergences in the Similarity RG approach to LF QCD

    Full text link
    We study small x divergences in boost invariant similarity renormalization group approach to light-front QCD in a heavy quark-antiquark state. With the boost invariance maintained, the infrared divergences do not cancel out in the physical states, contrary to previous studies where boost invariance was violated by a choice of a renormalization scale. This may be an indication that the zero mode, or nontrivial light-cone vacuum structure, might be important for recovering full Lorentz invariance.Comment: 23 pgs, 1 fig. Revised for publication: typos corrected, improved discussion of regularizatio

    A Density Matrix Renormalization Group Approach to an Asymptotically Free Model with Bound States

    Get PDF
    We apply the DMRG method to the 2 dimensional delta function potential which is a simple quantum mechanical model with asymptotic freedom and formation of bound states. The system block and the environment block of the DMRG contain the low energy and high energy degrees of freedom, respectively. The ground state energy and the lowest excited states are obtained with very high accuracy. We compare the DMRG method with the Similarity RG method and propose its generalization to field theoretical models in high energy physics.Comment: REVTEX file, 4 pages, 1 Table, 3 eps Figures. Explanation on the extension to many-body QFT problems added, 3 new references and some minor changes. New forma

    Renormalization of Tamm-Dancoff Integral Equations

    Full text link
    During the last few years, interest has arisen in using light-front Tamm-Dancoff field theory to describe relativistic bound states for theories such as QCD. Unfortunately, difficult renormalization problems stand in the way. We introduce a general, non-perturbative approach to renormalization that is well suited for the ultraviolet and, presumably, the infrared divergences found in these systems. We reexpress the renormalization problem in terms of a set of coupled inhomogeneous integral equations, the ``counterterm equation.'' The solution of this equation provides a kernel for the Tamm-Dancoff integral equations which generates states that are independent of any cutoffs. We also introduce a Rayleigh-Ritz approach to numerical solution of the counterterm equation. Using our approach to renormalization, we examine several ultraviolet divergent models. Finally, we use the Rayleigh-Ritz approach to find the counterterms in terms of allowed operators of a theory.Comment: 19 pages, OHSTPY-HEP-T-92-01

    Mesons in (2+1) Dimensional Light Front QCD. II. Similarity Renormalization Approach

    Get PDF
    Recently we have studied the Bloch effective Hamiltonian approach to bound states in 2+1 dimensional gauge theories. Numerical calculations were carried out to investigate the vanishing energy denominator problem. In this work we study similarity renormalization approach to the same problem. By performing analytical calculations with a step function form for the similarity factor, we show that in addition to curing the vanishing energy denominator problem, similarity approach generates linear confining interaction for large transverse separations. However, for large longitudinal separations, the generated interaction grows only as the square root of the longitudinal separation and hence produces violations of rotational symmetry in the spectrum. We carry out numerical studies in the G{\l}azek-Wilson and Wegner formalisms and present low lying eigenvalues and wavefunctions. We investigate the sensitivity of the spectra to various parameterizations of the similarity factor and other parameters of the effective Hamiltonian, especially the scale σ\sigma. Our results illustrate the need for higher order calculations of the effective Hamiltonian in the similarity renormalization scheme.Comment: 31 pages, 4 figures, to be published in Physical Review

    Flow equations for QED in the light front dynamics

    Full text link
    The method of flow equations is applied to QED on the light front. Requiring that the partical number conserving terms in the Hamiltonian are considered to be diagonal and the other terms off-diagonal an effective Hamiltonian is obtained which reduces the positronium problem to a two-particle problem, since the particle number violating contributions are eliminated. No infrared divergencies appear. The ultraviolet renormalization can be performed simultaneously.Comment: 15 pages, Latex, 3 pictures, Submitted to Phys.Rev.

    Non-perturbative flow equations from continuous unitary transformations

    Get PDF
    We use a novel parameterization of the flowing Hamiltonian to show that the flow equations based on continuous unitary transformations, as proposed by Wegner, can be implemented through a nonlinear partial differential equation involving one flow parameter and two system specific auxiliary variables. The implementation is non-perturbative as the partial differential equation involves a systematic expansion in fluctuations, controlled by the size of the system, rather than the coupling constant. The method is applied to the Lipkin model to construct a mapping which maps the non-interacting spectrum onto the interacting spectrum to a very high accuracy. This function is universal in the sense that the full spectrum for any (large) number of particles can be obtained from it. In a similar way expectation values for a large class of operators can be obtained, which also makes it possible to probe the stucture of the eigenstates.Comment: 24 pages, 13 figure

    Associative polynomial functions over bounded distributive lattices

    Get PDF
    The associativity property, usually defined for binary functions, can be generalized to functions of a given fixed arity n>=1 as well as to functions of multiple arities. In this paper, we investigate these two generalizations in the case of polynomial functions over bounded distributive lattices and present explicit descriptions of the corresponding associative functions. We also show that, in this case, both generalizations of associativity are essentially the same.Comment: Final versio

    Glueballs in a Hamiltonian Light-Front Approach to Pure-Glue QCD

    Get PDF
    We calculate a renormalized Hamiltonian for pure-glue QCD and diagonalize it. The renormalization procedure is designed to produce a Hamiltonian that will yield physical states that rapidly converge in an expansion in free-particle Fock-space sectors. To make this possible, we use light-front field theory to isolate vacuum effects, and we place a smooth cutoff on the Hamiltonian to force its free-state matrix elements to quickly decrease as the difference of the free masses of the states increases. The cutoff violates a number of physical principles of light-front pure-glue QCD, including Lorentz covariance and gauge covariance. This means that the operators in the Hamiltonian are not required to respect these physical principles. However, by requiring the Hamiltonian to produce cutoff-independent physical quantities and by requiring it to respect the unviolated physical principles of pure-glue QCD, we are able to derive recursion relations that define the Hamiltonian to all orders in perturbation theory in terms of the running coupling. We approximate all physical states as two-gluon states, and use our recursion relations to calculate to second order the part of the Hamiltonian that is required to compute the spectrum. We diagonalize the Hamiltonian using basis-function expansions for the gluons' color, spin, and momentum degrees of freedom. We examine the sensitivity of our results to the cutoff and use them to analyze the nonperturbative scale dependence of the coupling. We investigate the effect of the dynamical rotational symmetry of light-front field theory on the rotational degeneracies of the spectrum and compare the spectrum to recent lattice results. Finally, we examine our wave functions and analyze the various sources of error in our calculation.Comment: 75 pages, 17 figures, 1 tabl

    Flow equations for Hamiltonians: Contrasting different approaches by using a numerically solvable model

    Full text link
    To contrast different generators for flow equations for Hamiltonians and to discuss the dependence of physical quantities on unitarily equivalent, but effectively different initial Hamiltonians, a numerically solvable model is considered which is structurally similar to impurity models. By this we discuss the question of optimization for the first time. A general truncation scheme is established that produces good results for the Hamiltonian flow as well as for the operator flow. Nevertheless, it is also pointed out that a systematic and feasible scheme for the operator flow on the operator level is missing. For this, an explicit analysis of the operator flow is given for the first time. We observe that truncation of the series of the observable flow after the linear or bilinear terms does not yield satisfactory results for the entire parameter regime as - especially close to resonances - even high orders of the exact series expansion carry considerable weight.Comment: 25 pages, 10 figure
    corecore