38 research outputs found

    Ground state properties and excitation spectra of non-Galilean invariant interacting Bose systems

    Full text link
    We study the ground state properties and the excitation spectrum of bosons which, in addition to a short-range repulsive two body potential, interact through the exchange of some dispersionless bosonic modes. The latter induces a time dependent (retarded) boson-boson interaction which is attractive in the static limit. Moreover the coupling with dispersionless modes introduces a reference frame for the moving boson system and hence breaks the Galilean invariance of this system. The ground state of such a system is depleted {\it linearly} in the boson density due to the zero point fluctuations driven by the retarded part of the interaction. Both quasiparticle (microscopic) and compressional (macroscopic) sound velocities of the system are studied. The microscopic sound velocity is calculated up the second order in the effective two body interaction in a perturbative treatment, similar to that of Beliaev for the dilute weakly interacting Bose gas. The hydrodynamic equations are used to obtain the macroscopic sound velocity. We show that these velocities are identical within our perturbative approach. We present analytical results for them in terms of two dimensional parameters -- an effective interaction strength and an adiabaticity parameter -- which characterize the system. We find that due the presence of several competing effects, which determine the speed of the sound of the system, three qualitatively different regimes can be in principle realized in the parameter space and discuss them on physical grounds.Comment: 6 pages, 2 figures, to appear in Phys. Rev.

    X-ray edge problem of graphene

    Full text link
    The X-ray edge problem of graphene with the Dirac fermion spectrum is studied. At half-filling the linear density of states suppresses the singular response of the Fermi liquid, while away from half-filling the singular features of the Fermi liquid reappear. The crossover behavior as a function of the Fermi energy is examined in detail. The exponent of the power-law absorption rate depends both on the intra- and inter-valley scattering, and it changes as a function of the Fermi energy, which may be tested experimentally.Comment: 7 pages, 1 figur

    Excitation spectrum in a cylindrical Bose-Einstein gas

    Full text link
    Whole excitation spectrum is calculated within the Popov approximation of the Bogoliubov theory for a cylindrical symmetric Bose-Einstein gas trapped radially by a harmonic potential. The full dispersion relation and its temperature dependence of the zero sound mode propagating along the axial direction are evaluated in a self-consistent manner. The sound velocity is shown to depend not only on the peak density, but also on the axial area density. Recent sound velocity experiment on Na atom gas is discussed in light of the present theory.Comment: 4 pages, 5 eps figure

    Superfluidity of bosons on a deformable lattice

    Full text link
    We study the superfluid properties of a system of interacting bosons on a lattice which, moreover, are coupled to the vibrational modes of this lattice, treated here in terms of Einstein phonon model. The ground state corresponds to two correlated condensates: that of the bosons and that of the phonons. Two competing effects determine the common collective soundwave-like mode with sound velocity vv, arising from gauge symmetry breaking: i) The sound velocity v0v_0 (corresponding to a weakly interacting Bose system on a rigid lattice) in the lowest order approximation is reduced due to reduction of the repulsive boson-boson interaction, arising from the attractive part of phonon mediated interaction in the static limit. ii) the second order correction to the sound velocity is enhanced as compared to the one of bosons on a rigid lattice when the the boson-phonon interaction is switched on due to the retarded nature of phonon mediated interaction. The overall effect is that the sound velocity is practically unaffected by the coupling with phonons, indicating the robustness of the superfluid state. The induction of a coherent state in the phonon system, driven by the condensation of the bosons could be of experimental significance, permitting spectroscopic detections of superfluid properties of the bosons. Our results are based on an extension of the Beliaev - Popov formalism for a weakly interacting Bose gas on a rigid lattice to that on a deformable lattice with which it interacts.Comment: 12 pages, 14 figures, to appear in Phys. Rev.

    Polaronic excitations in CMR manganite films

    Get PDF
    In the colossal magnetoresistance manganites polarons have been proposed as the charge carrier state which localizes across the metal-insulator transition. The character of the polarons is still under debate. We present an assessment of measurements which identify polarons in the metallic state of La{2/3}Sr{1/3}MnO{3} (LSMO) and La{2/3}Ca{1/3}MnO{3} (LCMO) thin films. We focus on optical spectroscopy in these films which displays a pronounced resonance in the mid-infrared. The temperature dependent resonance has been previously assigned to polaron excitations. These polaronic resonances are qualitatively distinct in LSMO and LCMO and we discuss large and small polaron scenarios which have been proposed so far. There is evidence for a large polaron excitation in LSMO and small polarons in LCMO. These scenarios are examined with respect to further experimental probes, specifically charge carrier mobility (Hall-effect measurements) and high-temperature dc-resistivity.Comment: 16 pages, 10 figure

    Effects of Disorder in a Dilute Bose Gas

    Full text link
    We discuss the effects of a weak random external potential on the properties of the dilute Bose gas at zero temperature. The results recently obtained by Huang and Meng for the depletion of the condensate and of the superfluid density are recovered. Results for the shift of the velocity of sound as well as for its damping due to collisions with the external field are presented. The damping of phonons is calculated also for dense superfluids. (submitted to Phys.Rev.B)Comment: 21 pages, Plain Tex, 2 figures available upon request, preprint UTF 31

    Infrared Behavior of Interacting Bosons at Zero Temperature

    Full text link
    We exploit the symmetries associated with the stability of the superfluid phase to solve the long-standing problem of interacting bosons in the presence of a condensate at zero temperature. Implementation of these symmetries poses strong conditions on the renormalizations that heal the singularities of perturbation theory. The renormalized theory gives: For d>3 the Bogoliubov quasiparticles as an exact result; for 1<d<=3 a nontrivial solution with the exact exponent for the singular longitudinal correlation function, with phonons again as low-lying excitations.Comment: Minor Changes. 4 pages, RevTeX, no figures, uses multicol.sty e-mail: [email protected]

    Solution of the X-ray edge problem for 2D electrons in a magnetic field

    Full text link
    The absorption and emission spectra of transitions between a localized level and a two-dimensional electron gas, subjected to a weak magnetic field, are calculated analytically. Adopting the Landau level bosonization technique developed in previous papers, we find an exact expression for the relative intensities of spectral lines. Their envelope function, governed by the interaction between the electron gas and the core hole, is reminescent of the famous Fermi edge singularity, which is recovered in the limit of a vanishing magnetic field.Comment: 4 pages, 1 figur

    Renormalization Group Approach to the Infrared Behavior of a Zero-Temperature Bose System

    Full text link
    We exploit the renormalization-group approach to establish the {\em exact} infrared behavior of an interacting Bose system at zero temperature. The local-gauge symmetry in the broken-symmetry phase is implemented through the associated Ward identities, which reduce the number of independent running couplings to a single one. For this coupling the ϵ\epsilon-expansion can be controlled to all orders in ϵ\epsilon (=3d=3-d). For spatial dimensions 1<d31 < d \leq 3 the Bogoliubov fixed point is unstable towards a different fixed point characterized by the divergence of the longitudinal correlation function. The Bogoliubov linear spectrum, however, is found to be independent from the critical behavior of this correlation function, being exactly constrained by Ward identities. The new fixed point properly gives a finite value of the coupling among transverse fluctuations, but due to virtual intermediate longitudinal fluctuations the effective coupling affecting the transverse correlation function flows to zero. As a result, no transverse anomalous dimension is present. This treatment allows us to recover known results for the quantum Bose gas in the context of a unifying framework and also to reveal the non-trivial skeleton structure of its perturbation theory.Comment: 21 page

    Properties of Nambu-Goldstone Bosons in a Single-Component Bose-Einstein Condensate

    Full text link
    We theoretically study the properties of Nambu-Goldstone bosons in an interacting single-component Bose-Einstein condensate (BEC). We first point out that the proofs of Goldstone's theorem by Goldstone, et al. [Phys. Rev. {\bf 127} (1962) 965] may be relevant to distinct massless modes of the BEC: whereas the first proof deals with the poles of the single-particle Green's function G^\hat{G}, the second one concerns those of the two-particle Green's function. Thus, there may be multiple Nambu-Goldstone bosons even in the single-component BEC with broken U(1) symmetry. The second mode turns out to have an infinite lifetime in the long-wavelength limit in agreement with the conventional viewpoint. In contrast, the first mode from G^\hat{G}, i.e., the Bogoliubov mode in the weak-coupling regime, is shown to be a "bubbling" mode fluctuating temporally out of and back into the condensate. The substantial lifetime originates from an "improper" structure of the self-energy inherent in the BEC, which has been overlooked so far and will be elucidated here, and removes various infrared divergences pointed out previously.Comment: 9 pages, 6 gigure
    corecore