301 research outputs found

    Triadic motifs and dyadic self-organization in the World Trade Network

    Full text link
    In self-organizing networks, topology and dynamics coevolve in a continuous feedback, without exogenous driving. The World Trade Network (WTN) is one of the few empirically well documented examples of self-organizing networks: its topology strongly depends on the GDP of world countries, which in turn depends on the structure of trade. Therefore, understanding which are the key topological properties of the WTN that deviate from randomness provides direct empirical information about the structural effects of self-organization. Here, using an analytical pattern-detection method that we have recently proposed, we study the occurrence of triadic "motifs" (subgraphs of three vertices) in the WTN between 1950 and 2000. We find that, unlike other properties, motifs are not explained by only the in- and out-degree sequences. By contrast, they are completely explained if also the numbers of reciprocal edges are taken into account. This implies that the self-organization process underlying the evolution of the WTN is almost completely encoded into the dyadic structure, which strongly depends on reciprocity.Comment: 12 pages, 3 figures; Best Paper Award at the 6th International Conference on Self-Organizing Systems, Delft, The Netherlands, 15-16/03/201

    Interplay between topology and dynamics in the World Trade Web

    Get PDF
    We present an empirical analysis of the network formed by the trade relationships between all world countries, or World Trade Web (WTW). Each (directed) link is weighted by the amount of wealth flowing between two countries, and each country is characterized by the value of its Gross Domestic Product (GDP). By analysing a set of year-by-year data covering the time interval 1950-2000, we show that the dynamics of all GDP values and the evolution of the WTW (trade flow and topology) are tightly coupled. The probability that two countries are connected depends on their GDP values, supporting recent theoretical models relating network topology to the presence of a `hidden' variable (or fitness). On the other hand, the topology is shown to determine the GDP values due to the exchange between countries. This leads us to a new framework where the fitness value is a dynamical variable determining, and at the same time depending on, network topology in a continuous feedback.Comment: Proceedings of the 5th conference on Applications of Physics in Financial Analysis (APFA5), 29 June - 1 July 2006, Torino (ITALY

    Applying weighted network measures to microarray distance matrices

    Full text link
    In recent work we presented a new approach to the analysis of weighted networks, by providing a straightforward generalization of any network measure defined on unweighted networks. This approach is based on the translation of a weighted network into an ensemble of edges, and is particularly suited to the analysis of fully connected weighted networks. Here we apply our method to several such networks including distance matrices, and show that the clustering coefficient, constructed by using the ensemble approach, provides meaningful insights into the systems studied. In the particular case of two data sets from microarray experiments the clustering coefficient identifies a number of biologically significant genes, outperforming existing identification approaches.Comment: Accepted for publication in J. Phys.

    An ensemble approach to the analysis of weighted networks

    Get PDF
    We present a new approach to the calculation of measures in weighted networks, based on the translation of a weighted network into an ensemble of edges. This leads to a straightforward generalization of any measure defined on unweighted networks, such as the average degree of the nearest neighbours, the clustering coefficient, the `betweenness', the distance between two nodes and the diameter of a network. All these measures are well established for unweighted networks but have hitherto proven difficult to define for weighted networks. Further to introducing this approach we demonstrate its advantages by applying the clustering coefficient constructed in this way to two real-world weighted networks.Comment: 4 pages 3 figure

    Self-organized network evolution coupled to extremal dynamics

    Full text link
    The interplay between topology and dynamics in complex networks is a fundamental but widely unexplored problem. Here, we study this phenomenon on a prototype model in which the network is shaped by a dynamical variable. We couple the dynamics of the Bak-Sneppen evolution model with the rules of the so-called fitness network model for establishing the topology of a network; each vertex is assigned a fitness, and the vertex with minimum fitness and its neighbours are updated in each iteration. At the same time, the links between the updated vertices and all other vertices are drawn anew with a fitness-dependent connection probability. We show analytically and numerically that the system self-organizes to a non-trivial state that differs from what is obtained when the two processes are decoupled. A power-law decay of dynamical and topological quantities above a threshold emerges spontaneously, as well as a feedback between different dynamical regimes and the underlying correlation and percolation properties of the network.Comment: Accepted version. Supplementary information at http://www.nature.com/nphys/journal/v3/n11/suppinfo/nphys729_S1.htm

    Null Models of Economic Networks: The Case of the World Trade Web

    Get PDF
    In all empirical-network studies, the observed properties of economic networks are informative only if compared with a well-defined null model that can quantitatively predict the behavior of such properties in constrained graphs. However, predictions of the available null-model methods can be derived analytically only under assumptions (e.g., sparseness of the network) that are unrealistic for most economic networks like the World Trade Web (WTW). In this paper we study the evolution of the WTW using a recently-proposed family of null network models. The method allows to analytically obtain the expected value of any network statistic across the ensemble of networks that preserve on average some local properties, and are otherwise fully random. We compare expected and observed properties of the WTW in the period 1950-2000, when either the expected number of trade partners or total country trade is kept fixed and equal to observed quantities. We show that, in the binary WTW, node-degree sequences are sufficient to explain higher-order network properties such as disassortativity and clustering-degree correlation, especially in the last part of the sample. Conversely, in the weighted WTW, the observed sequence of total country imports and exports are not sufficient to predict higher-order patterns of the WTW. We discuss some important implications of these findings for international-trade models.Comment: 39 pages, 46 figures, 2 table

    Emergence of weight-topology correlations in complex scale-free networks

    Full text link
    Different weighted scale-free networks show weights-topology correlations indicated by the non linear scaling of the node strength with node connectivity. In this paper we show that networks with and without weight-topology correlations can emerge from the same simple growth dynamics of the node connectivities and of the link weights. A weighted fitness network is introduced in which both nodes and links are assigned intrinsic fitness. This model can show a local dependence of the weight-topology correlations and can undergo a phase transition to a state in which the network is dominated by few links which acquire a finite fraction of the total weight of the network.Comment: (4 pages,3 figures

    Spatial effects in real networks: measures, null models, and applications

    Get PDF
    Spatially embedded networks are shaped by a combination of purely topological (space-independent) and space-dependent formation rules. While it is quite easy to artificially generate networks where the relative importance of these two factors can be varied arbitrarily, it is much more difficult to disentangle these two architectural effects in real networks. Here we propose a solution to the problem by introducing global and local measures of spatial effects that, through a comparison with adequate null models, effectively filter out the spurious contribution of non-spatial constraints. Our filtering allows us to consistently compare different embedded networks or different historical snapshots of the same network. As a challenging application we analyse the World Trade Web, whose topology is expected to depend on geographic distances but is also strongly determined by non-spatial constraints (degree sequence or GDP). Remarkably, we are able to detect weak but significant spatial effects both locally and globally in the network, showing that our method succeeds in retrieving spatial information even when non-spatial factors dominate. We finally relate our results to the economic literature on gravity models and trade globalization

    Patterns of link reciprocity in directed networks

    Full text link
    We address the problem of link reciprocity, the non-random presence of two mutual links between pairs of vertices. We propose a new measure of reciprocity that allows the ordering of networks according to their actual degree of correlation between mutual links. We find that real networks are always either correlated or anticorrelated, and that networks of the same type (economic, social, cellular, financial, ecological, etc.) display similar values of the reciprocity. The observed patterns are not reproduced by current models. This leads us to introduce a more general framework where mutual links occur with a conditional connection probability. In some of the studied networks we discuss the form of the conditional connection probability and the size dependence of the reciprocity.Comment: Final version accepted for publication on Physical Review Letter

    The International Trade Network

    Full text link
    Bilateral trade relationships in the international level between pairs of countries in the world give rise to the notion of the International Trade Network (ITN). This network has attracted the attention of network researchers as it serves as an excellent example of the weighted networks, the link weight being defined as a measure of the volume of trade between two countries. In this paper we analyzed the international trade data for 53 years and studied in detail the variations of different network related quantities associated with the ITN. Our observation is that the ITN has also a scale invariant structure like many other real-world networks.Comment: 9 pages, 7 figure
    corecore