70 research outputs found

    Generalized Eigenvectors for Resonances in the Friedrichs Model and Their Associated Gamov Vectors

    Full text link
    A Gelfand triplet for the Hamiltonian H of the Friedrichs model on R with finite-dimensional multiplicity space K, is constructed such that exactly the resonances (poles of the inverse of the Livsic-matrix) are (generalized) eigenvalues of H. The corresponding eigen-antilinearforms are calculated explicitly. Using the wave matrices for the wave (Moller) operators the corresponding eigen-antilinearforms on the Schwartz space S for the unperturbed Hamiltonian are also calculated. It turns out that they are of pure Dirac type and can be characterized by their corresponding Gamov vector, which is uniquely determined by restriction of S to the intersection of S with the Hardy space of the upper half plane. Simultaneously this restriction yields a truncation of the generalized evolution to the well-known decay semigroup of the Toeplitz type for the positive half line on the Hardy space. That is: exactly those pre-Gamov vectors (eigenvectors of the decay semigroup) have an extension to a generalized eigenvector of H if the eigenvalue is a resonance and if the multiplicity parameter k is from that subspace of K which is uniquely determined by its corresponding Dirac type antilinearform.Comment: 16 page

    Fingerprints of carbon defects in vibrational spectra of gallium nitride (GaN) consider-ing the isotope effect

    Full text link
    This work examines the carbon defects associated with recently reported and novel peaks of infrared (IR) absorption and Raman scattering appearing in GaN crystals at carbon (12C^{12}C) doping in the range of concentrations from 3.2∗10173.2*10^{17} to 3.5∗1019cm−33.5*10^{19} cm^{-3}. 14 unique vibrational modes of defects are observed in GaN samples grown by hydride vapor phase epitaxy (HVPE) and then compared with defect properties predicted from first-principles calculations. The vibrational frequency shift in two 13C^{13}C enriched samples related to the effect of the isotope mass indicates six distinct configurations of the carbon-containing point defects. The effect of the isotope replacement is well reproduced by the density functional theory (DFT) calculations. Specific attention is paid to the most pronounced defects, namely tri-carbon complexes(CN=C=CNC_N=C=C_N) and carbon substituting for nitrogen CNC_N. The position of the transition level (+/0) in the bandgap found for CN=C=CNC_N=C=C_N defects by DFT at 1.1 eV above the valence band maximum, suggest that (CN=C=CN)+(C_N=C=C_N)^+ provides compensation of CN−{C_N}^-. CN=C=CNC_N=C=C_N defects are observed to be prominent, yet have high formation energies in DFT calculations. Regarding CN{C_N} defects, it is shown that the host Ga and N atoms are involved in the defect's delocalized vibrations and significantly affect the isotopic frequency shift. Much more faint vibrational modes are found from di-atomic carbon-carbon and carbon-hydrogen (C-H) complexes. Also, we note changes of vibrational mode intensities of CNC_N, CN=C=CNC_N=C=C_N, C-H, and CN−CiC_N-C_i defects in the IR absorption spectra upon irradiation in the defect-related UV/visible absorption range. Finally, it is demonstrated that the resonant enhancement of the Raman process in the range of defect absorption above 2.5 eV enables the detection of defects at carbon doping concentrations as low as 3.2∗1017cm−33.2*10^{17} cm^{-3}

    Continuum corrections to the level density and its dependence on excitation energy, n-p asymmetry, and deformation

    Full text link
    In the independent-particle model, the nuclear level density is determined from the neutron and proton single-particle level densities. The single-particle level density for the positive-energy continuum levels is important at high excitation energies for stable nuclei and at all excitation energies for nuclei near the drip lines. This single-particle level density is subdivided into compound-nucleus and gas components. Two methods were considered for this subdivision. First in the subtraction method, the single-particle level density is determined from the scattering phase shifts. In the Gamov method, only the narrow Gamov states or resonances are included. The level densities calculated with these two methods are similar, both can be approximated by the backshifted Fermi-gas expression with level-density parameters that are dependent on A, but with very little dependence on the neutron or proton richness of the nucleus. However, a small decrease in the level-density parameter was predicted for some nuclei very close to the drip lines. The largest difference between the calculations using the two methods was the deformation dependence on the level density. The Gamov method predicts a very strong peaking of the level density at sphericity for high excitation energies. This leads to a suppression of deformed configurations and, consequently, the fission rate predicted by the statistical model is reduced in the Gamov method.Comment: 18 pages 24 figure

    Concave and Convex photonic Barriers in Gradient Optics

    Get PDF
    Propagation and tunneling of light through photonic barriers formed by thin dielectric films with continuous curvilinear distributions of dielectric susceptibility across the film, are considered. Giant heterogeneity-induced dispersion of these films, both convex and concave, and its influence on their reflectivity and transmittivity are visualized by means of exact analytical solutions of Maxwell equations. Depending on the cut-off frequency of the film, governed by the spatial profile of its refractive index, propagation or tunneling of light through such barriers are examined. Subject to the shape of refractive index profile the group velocities of EM waves in these films are shown to be either increased or deccreased as compared with the homogeneous layers; however, these velocities for both propagation and tunneling regimes remain subluminal. The decisive influence of gradient and curvature of photonic barriers on the efficiency of tunneling is examined by means of generalized Fresnel formulae. Saturation of the phase of the wave tunneling through a stack of such films (Hartman effect), is demonstrated. The evanescent modes in lossy barriers and violation of Hartman effect in this case is discussed

    Trialogue on the number of fundamental constants

    Get PDF
    This paper consists of three separate articles on the number of fundamental dimensionful constants in physics. We started our debate in summer 1992 on the terrace of the famous CERN cafeteria. In the summer of 2001 we returned to the subject to find that our views still diverged and decided to explain our current positions. LBO develops the traditional approach with three constants, GV argues in favor of at most two (within superstring theory), while MJD advocates zero.Comment: Version appearing in JHEP; 31 pages late

    Adiabatic decaying vacuum model for the universe

    Full text link
    We study a model that the entropy per particle in the universe is constant. The sources for the entropy are the particle creation and a lambda decaying term. We find exact solutions for the Einstein field equations and show the compatibilty of the model with respect to the age and the acceleration of the universe.Comment: 10 pages, 2 figure

    Alpha decay and proton-neutron correlations

    Full text link
    We study the influence of proton-neutron (p-n) correlations on alpha-decay width. It is shown from the analysis of alpha Q values that the p-n correlations increase the penetration of the alpha particle through the Coulomb barrier in the treatment following Gamow's formalism, and enlarges the total alpha-decay width significantly. In particular, the isoscalar p-n interactions play an essential role in enlarging the alpha-decay width. The so-called "alpha-condensate" in Z > 84 isotopes are related to the strong p-n correlations.Comment: 5 pages, 6 figures, accepted for publication in Phys. Rev. C (R.C.

    Accretion Disc Theory: From the Standard Model Until Advection

    Get PDF
    Accretion disc theory was first developed as a theory with the local heat balance, where the whole energy produced by a viscous heating was emitted to the sides of the disc. One of the most important new invention of this theory was a phenomenological treatment of the turbulent viscosity, known as ''alpha'' prescription, when the (rϕ\phi) component of the stress tensor was approximated by (α\alpha P) with a unknown constant α\alpha. This prescription played the role in the accretion disc theory as well important as the mixing-length theory of convection for stellar evolution. Sources of turbulence in the accretion disc are discussed, including nonlinear hydrodynamical turbulence, convection and magnetic field role. In parallel to the optically thick geometrically thin accretion disc models, a new branch of the optically thin accretion disc models was discovered, with a larger thickness for the same total luminosity. The choice between these solutions should be done of the base of a stability analysis. The ideas underlying the necessity to include advection into the accretion disc theory are presented and first models with advection are reviewed. The present status of the solution for a low-luminous optically thin accretion disc model with advection is discussed and the limits for an advection dominated accretion flows (ADAF) imposed by the presence of magnetic field are analysed.Comment: Roceeding of the Int. Workshop "Observational Evidence for Black Holes in the Universe". Calcutta, 11-17 January 1998. Kluwer Acad. Pu

    Quantum-Classical Transition of the Escape Rate of a Uniaxial Spin System in an Arbitrarily Directed Field

    Full text link
    The escape rate \Gamma of the large-spin model described by the Hamiltonian H = -DS_z^2 - H_zS_z - H_xS_x is investigated with the help of the mapping onto a particle moving in a double-well potential U(x). The transition-state method yields Γ\Gamma in the moderate-damping case as a Boltzmann average of the quantum transition probabilities. We have shown that the transition from the classical to quantum regimes with lowering temperature is of the first order (d\Gamma/dT discontinuous at the transition temperature T_0) for h_x below the phase boundary line h_x=h_{xc}(h_z), where h_{x,z}\equiv H_{x,z}/(2SD), and of the second order above this line. In the unbiased case (H_z=0) the result is h_{xc}(0)=1/4, i.e., one fourth of the metastability boundary h_{xm}=1, at which the barrier disappears. In the strongly biased limit \delta\equiv 1-h_z << 1, one has h_{xc} \cong (2/3)^{3/4}(\sqrt{3}-\sqrt{2})\delta^{3/2}\cong 0.2345 \delta^{3/2}, which is about one half of the boundary value h_{xm} \cong (2\delta/3)^{3/2} \cong 0.5443 \delta^{3/2}.The latter case is relevant for experiments on small magnetic particles, where the barrier should be lowered to achieve measurable quantum escape rates.Comment: 17 PR pages, 16 figures; published versio

    Dynamics of the Universe with global rotation

    Full text link
    We analyze dynamics of the FRW models with global rotation in terms of dynamical system methods. We reduce dynamics of these models to the FRW models with some fictitious fluid which scales like radiation matter. This fluid mimics dynamically effects of global rotation. The significance of the global rotation of the Universe for the resolution of the acceleration and horizon problems in cosmology is investigated. It is found that dynamics of the Universe can be reduced to the two-dimensional Hamiltonian dynamical system. Then the construction of the Hamiltonian allows for full classification of evolution paths. On the phase portraits we find the domains of cosmic acceleration for the globally rotating universe as well as the trajectories for which the horizon problem is solved. We show that the FRW models with global rotation are structurally stable. This proves that the universe acceleration is due to the global rotation. It is also shown how global rotation gives a natural explanation of the empirical relation between angular momentum for clusters and superclusters of galaxies. The relation J∌M2J \sim M^2 is obtained as a consequence of self similarity invariance of the dynamics of the FRW model with global rotation. In derivation of this relation we use the Lie group of symmetry analysis of differential equation.Comment: Revtex4, 22 pages, 5 figure
    • 

    corecore