267 research outputs found
Strong quantum violation of the gravitational weak equivalence principle by a non-Gaussian wave-packet
The weak equivalence principle of gravity is examined at the quantum level in
two ways. First, the position detection probabilities of particles described by
a non-Gaussian wave-packet projected upwards against gravity around the
classical turning point and also around the point of initial projection are
calculated. These probabilities exhibit mass-dependence at both these points,
thereby reflecting the quantum violation of the weak equivalence principle.
Secondly, the mean arrival time of freely falling particles is calculated using
the quantum probability current, which also turns out to be mass dependent.
Such a mass-dependence is shown to be enhanced by increasing the
non-Gaussianity parameter of the wave packet, thus signifying a stronger
violation of the weak equivalence principle through a greater departure from
Gaussianity of the initial wave packet. The mass-dependence of both the
position detection probabilities and the mean arrival time vanish in the limit
of large mass. Thus, compatibility between the weak equivalence principle and
quantum mechanics is recovered in the macroscopic limit of the latter. A
selection of Bohm trajectories is exhibited to illustrate these features in the
free fall case.Comment: 11 pages, 7 figure
Statistical physics of fracture and earthquakes
Manifestations of emergent properties in stressed disordered materials are often the result of an interplay of strong perturbations in the stress field around defects. The collective response of a long-ranged correlated multi-component system is an ideal playing field for statistical physics. Hence, many aspects of such collective responses in widely spread length and energy scales can be addressed by tools of statistical physics. In this theme issue some of these aspects are treated from various angles of experiments, simulations and analytical methods, and connected together by their common base of complex-system dynamics
Many-body quantum dynamics of polarisation squeezing in optical fibre
We report new experiments that test quantum dynamical predictions of
polarization squeezing for ultrashort photonic pulses in a birefringent fibre,
including all relevant dissipative effects. This exponentially complex
many-body problem is solved by means of a stochastic phase-space method. The
squeezing is calculated and compared to experimental data, resulting in
excellent quantitative agreement. From the simulations, we identify the
physical limits to quantum noise reduction in optical fibres. The research
represents a significant experimental test of first-principles time-domain
quantum dynamics in a one-dimensional interacting Bose gas coupled to
dissipative reservoirs.Comment: 4 pages, 4 figure
Information-Based Physics: An Observer-Centric Foundation
It is generally believed that physical laws, reflecting an inherent order in
the universe, are ordained by nature. However, in modern physics the observer
plays a central role raising questions about how an observer-centric physics
can result in laws apparently worthy of a universal nature-centric physics.
Over the last decade, we have found that the consistent apt quantification of
algebraic and order-theoretic structures results in calculi that possess
constraint equations taking the form of what are often considered to be
physical laws. I review recent derivations of the formal relations among
relevant variables central to special relativity, probability theory and
quantum mechanics in this context by considering a problem where two observers
form consistent descriptions of and make optimal inferences about a free
particle that simply influences them. I show that this approach to describing
such a particle based only on available information leads to the mathematics of
relativistic quantum mechanics as well as a description of a free particle that
reproduces many of the basic properties of a fermion. The result is an approach
to foundational physics where laws derive from both consistent descriptions and
optimal information-based inferences made by embedded observers.Comment: To be published in Contemporary Physics. The manuscript consists of
43 pages and 9 Figure
On the quantum analogue of Galileo's leaning tower experiment
The quantum analogue of Galileo's leaning tower experiment is revisited using
wave packets evolving under the gravitational potential. We first calculate the
position detection probabilities for particles projected upwards against
gravity around the classical turning point and also around the point of initial
projection, which exhibit mass dependence at both these points. We then compute
the mean arrival time of freely falling particles using the quantum probability
current, which also turns out to be mass dependent. The mass dependence of both
the position detection probabilities and the mean arrival time vanish in the
limit of large mass. Thus, compatibility between the weak equivalence principle
and quantum mechanics is recovered in the macroscopic limit of the latter.Comment: Latex, 12 pages, 1 figure, uses IOP style, clarifications and
references adde
Quantum fluctuations for drag free geodesic motion
The drag free technique is used to force a proof mass to follow a geodesic
motion. The mass is protected from perturbations by a cage, and the motion of
the latter is actively controlled to follow the motion of the proof mass. We
present a theoretical analysis of the effects of quantum fluctuations for this
technique. We show that a perfect drag free operation is in principle possible
at the quantum level, in spite of the back action exerted on the mass by the
position sensor.Comment: 4 pages, 1 figure, RevTeX, minor change
General exact theory of autoresonance in nonautonomous systems
A general exact theory of autoresonance (self-sustained resonance) in both
dissipative and Hamiltonian nonautonomous systems is presented. The equations
that together govern the autoresonance solutions and excitations are derived
with the aid of a variational principle concerning the power functional. The
theory is applied to Duffing oscillators to obtain exact analytical expressions
for autoresonance excitations and solutions which explain all the
phenomenological and approximate results arising from the previous approach to
autoresonance phenomena.Comment: 12 pages, LaTeX; figures adde
- …