2,166 research outputs found

    Wide-field multi-color photometry of the Galactic globular cluster NGC 1261

    Full text link
    (Abriged)This work studies in more detail the stellar population, including its photometric properties and characteristics, in the rarely studied southern Galactic globular cluster NGC 1261. We focus on the brighter sequences of the cluster's color-magnitude diagram (CMD). Like in our previous works, we rely upon photometry in several passbands to achieve more reliable results and conclusions. We carried out and analyzed new multi-color photometry of NGC 1261 in UBVI reaching below the turnoff point in all passbands in a fairly extended cluster field, about 14'x14'. We found several signs of the inhomogeneity ("multiplicity") in the stellar population. The most prominent of them are: (1) the dependence of the radial distribution of sub-giant branch (SGB) stars in the cluster on their U magnitude, with brighter stars less centrally concentrated at the 99.9 \% level than their fainter counterparts; (2) the dependence of the location of red giant branch (RGB) stars in the U-(U-B) CMD on their radial distance from the cluster center, with the portion of stars bluer in the (U-B) color increasing towards the cluster outskirts. Additionally, the radial variation of the RGB luminosity function in the bump region is suspected. We assume that both the SGB stars brighter in the U and the RGB stars bluer in the (U-B) color are probably associated with blue horizontal branch stars, because of a similarity in their radial distribution in the cluster. We estimated the metalicity of NGC 1261 from the slope of the RGB in U-based CMDs and the location of the RGB bump on the branch. These metallicity indicators give [Fe/H]zw = -1.34 +/- 0.16 dex and [Fe/H]zw = -1.41 +/- 0.10 dex, respectively. We isolated 18 probable blue straggler candidates. They are more centrally concentrated than the lower red giants of comparable brightness at the 97.9 \% level.Comment: 8 pages, 9 figures, accepted for publication in A&

    Evidence of the inhomogeneity of the stellar population in the differentially reddened globular cluster NGC 3201

    Full text link
    We report on evidence of the inhomogeneity (multiplicity) of the stellar population in the Galactic globular cluster (GC) NGC 3201, which is irregularly reddened across its face. We carried out a more detailed and careful analysis of our recently published new multi-color photometry in a wide field of the cluster with particular emphasis on the U band. Using the photometric data corrected for differential reddening, we found for the first time two key signs of the inhomogeneity in the cluster's stellar population and of its radial variation in the GC. These are (1) an obvious trend in the color-position diagram, based on the (U-B) color-index, of red giant branch (RGB) stars, which shows that the farther from the cluster's center, the bluer on average the (U-B) color of the stars is; and (2) the dependence of the radial distribution of sub-giant branch (SGB) stars in the cluster on their U magnitude, where brighter stars are less centrally concentrated than their fainter counterparts at a confidence level varying between 99.2% and 99.9% depending on the color-index used to select the stars. The same effects were recently found by us in the GC NGC 1261. However, contrary to NGC 1261, we are not able to unambiguously suggest which of the sub-populations of SGB/RGB stars can be the progenitor of blue and red horizontal branch stars of the cluster. Apart from M4, NGC 3201 is another GC very probably with an inhomogeneous stellar population, which has essentially lower mass than the most massive Galactic GCs where multiple stellar populations were unambiguously detected for the first timeComment: 5 pages, 4 figure

    Strong radial segregation between sub-populations of evolutionary homogeneous stars in the Galactic globular cluster NGC 6752

    Full text link
    We investigate the new and still poorly studied matter of so-called multiple stellar populations (MSPs) in Galactic globular clusters (GGCs). Studying MSPs and their accumulated data can shed more light on the formation and evolution of GGCs and other closely related fundamental problems. We focus on the strong relation between the radial distribution of evolutionary homogeneous stars and their U-based photometric characteristics in the nearby GGC NGC 6752 and compare this with a similar relation we found in NGC 3201 and NGC 1261. We use our new multi-color photometry in a fairly wide field of NGC 6752, with particular emphasis on the U band and our recent and already published photometry made in NGC 3201 and NGC 1261. We found and report here for the first time a strong difference in the radial distribution between the sub-populations of red giant branch (RGB) stars that are bluer and redder in color U-B, as well as between sub-giant branch (SGB) stars brighter and fainter in the U-magnitude in NGC 6752. Moreover, the fainter SGB and redder RGB stars are similarly much more centrally concentrated than their respective brighter and bluer counterparts. Virtually the same applies to NGC 3201. We find evidence in NGC 6752 as in NGC 3201 that a dramatic change in the proportion of the two sub-populations of SGB and RGB stars occurs at a radial distance close to the half-mass radius, R_h, of the cluster. These results are the first detections of the radial trend of the particular photometric properties of stellar populations in GGCs. They imply a radial dependence of the main characteristics of the stellar populations in these GGCs, primarily of the abundance, and (indirectly) presumably of the kinematics.Comment: 5 pages, 5 figures, accepted for publication in Astronomy and Astrophysics (Letters

    SPECTRAL CORRELATIONS IN DISORDERED ELECTRONIC SYSTEMS: CROSSOVER FROM METAL TO INSULATOR REGIME

    Full text link
    We use the semiclassical approach combined with the scaling results for the diffusion coefficient to consider the two-level correlation function R(ε)R(\varepsilon) for a disordered electron system in the crossover region, characterized by the appearance of a macroscopic correlation or localization length, ξ\xi, that diverges at the metal-insulator transition. We show new critical statistics, characterized by a nontrivial asymptotic behavior of R(ε)R(\varepsilon), to emerge on both sides of the transition at higher energies, and to expand to all energies larger than mean level spacing when ξ\xi exceeds the system size.Comment: 4 pages,1 figure, in self-ectracting uuencoded gz-compressed file to be published in Phys. Rev. Letters; REVTeX source file is available upon reques

    The Level Spacing Distribution Near the Anderson Transition

    Full text link
    For a disordered system near the Anderson transition we show that the nearest-level-spacing distribution has the asymptotics P(s)exp(As2γ)P(s)\propto \exp(-A s^{2-\gamma }) for s\gg \av{s}\equiv 1 which is universal and intermediate between the Gaussian asymptotics in a metal and the Poisson in an insulator. (Here the critical exponent 0<γ<10<\gamma<1 and the numerical coefficient AA depend only on the dimensionality d>2d>2). It is obtained by mapping the energy level distribution to the Gibbs distribution for a classical one-dimensional gas with a pairwise interaction. The interaction, consistent with the universal asymptotics of the two-level correlation function found previously, is proved to be the power-law repulsion with the exponent γ-\gamma.Comment: REVTeX, 8 pages, no figure

    Multi-Color Photometry of the Galactic Globular Cluster M75 = NGC 6864. A New Sensitive Metallicity Indicator and the Position of the Horizontal Branch in UV

    Full text link
    We carry out and analyze new multi-color photometry of the Galactic globular cluster (GC) M75 in UBVI and focus on the brighter sequences of the color- magnitude diagram (CMD), with particular emphasis on their location in U-based CMD. Specifically, we study the level both of the horizontal (HB) and red giant branches (RGB) relative to the main-sequence turnoff (TO) in the U magnitude. Along with the presented photometry of M75, we use our collection of photometric data on GCs belonging to the metal-poor range, [Fe/H]zw<-1.1 dex, obtained from observations with different equipment, but calibrated by standard stars situated in the observed cluster fields. We confirm our earlier finding, and extend it to a larger magnitude range.We demonstrate that DeltaU_{TO}^{BHB} expressing the difference in U magnitude between the TO point and the level of the blue HB, near its red boundary, of the metal-poor GCs observed with the EMMI camera of the NTT/ESO telescope is about 0.4-0.5 mag smaller as compared to GCs observed with the 100" telescope and 1.3 m Warsaw telescope of the Las Campanas Observatory. At the same time, Delta U_{TO}^{RGB}, the difference in U magnitude between the TO and RGB inflection (brightest) points, does not show such an apparent dependence on the characteristics of U filters used, but it depends on cluster metallicity. We have shown, for the first time, the dependence of the parameter DeltaU_{TO}^{RGB} on [Fe/H] and have estimated its analytical expression, by assuming a linear relation between the parameter and metallicity. Its slope, Delta U_{TO}^{RGB}/Delta [Fe/H]~1.2 mag/dex, is approx. a factor of two steeper than that of the dependence of the RGB bump position in the V magnitude on metallicity. The asymptotic giant branch (AGB) clump and features of the RGB luminosity function (LF) of M75 are also discussed.Comment: 9 pages, 7 figures, accepted for publication in A&

    Escape of Ionizing Radiation from High Redshift Galaxies

    Full text link
    We model the escape of ionizing radiation from high-redshift galaxies using high-resolution Adaptive Mesh Refinement N-body + hydrodynamics simulations. Our simulations include time-dependent and spatially-resolved transfer of ionizing radiation in three dimensions, including effects of dust absorption. For galaxies of total mass M > 10^11 Msun and star formation rates SFR ~ 1-5 Msun/yr, we find angular averaged escape fractions of 0.01-0.03 over the entire redshift interval studied (3<z<9). In addition, we find that the escape fraction varies by more than an order of magnitude along different lines-of-sight within individual galaxies, from the largest values near galactic poles to the smallest along the galactic disk. The escape fraction declines steeply at lower masses and SFR. We show that the low values of escape fractions are due to a small fraction of young stars located just outside the edge of HI disk. We compare our predicted escape fraction of ionizing photons with previous results, and find a general agreement with both other simulation results and available direct detection measurements at z ~ 3. We also compare our simulations with a novel method to estimate the escape fraction in galaxies from the observed distribution of neutral hydrogen column densities along the lines of sights to long duration gamma-ray bursts. Using this method we find escape fractions of the GRB host galaxies of 2-3%, consistent with our theoretical predictions. [abridged]Comment: submitted to Ap

    Spin and orbital Hall effects for diffracting optical beams in gradient-index media

    Full text link
    We examine the evolution of paraxial beams carrying intrinsic spin and orbital angular momenta (AM) in gradient-index media. A parabolic-type equation is derived which describes the beam diffraction in curvilinear coordinates accompanying the central ray. The center of gravity of the beam experiences transverse AM-dependent deflections -- the spin and orbital Hall effects. The spin Hall effect generates a transverse translation of the beam as a whole, in precise agreement with recent geometrical optics predictions. At the same time, the orbital Hall effect is significantly affected by the diffraction in the inhomogeneous medium and is accompanied by changes in the intrinsic orbital AM and deformations of the beam.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Change of cosmic ray anisotropy with solar activity

    Get PDF
    Muon telescope data at various depths underground in Yakutsk within energy range 10 to 300 GeV for 1957 to 1984 are analyzed. The 22-year variation of the interplanetary magnetic field aligned component is found. The variation is caused by interaction of heliomagnetosphere with the local galactic field and interstellar wind

    On problem of polarization tomography, I

    Get PDF
    The polarization tomography problem consists of recovering a matrix function f from the fundamental matrix of the equation Dη/dt=πγ˙fηD\eta/dt=\pi_{\dot\gamma}f\eta known for every geodesic γ\gamma of a given Riemannian metric. Here πγ˙\pi_{\dot\gamma} is the orthogonal projection onto the hyperplan γ˙\dot\gamma^{\perp}. The problem arises in optical tomography of slightly anisotropic media. The local uniqueness theorem is proved: a C1C^1- small function f can be recovered from the data uniquely up to a natural obstruction. A partial global result is obtained in the case of the Euclidean metric on R3R^3
    corecore