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Abstract

The polarization tomography problem consists of recovering a matrix function

f from the fundamental matrix of the equation Dη/dt = πγ̇fη known for every

geodesic γ of a given Riemannian metric. Here πγ̇ is the orthogonal projection

onto the hyperplane γ̇⊥. The problem arises in optical tomography of slightly

anisotropic media. The local uniqueness theorem is proved: a C1-small function

f can be recovered from the data uniquely up to a natural obstruction. A partial

global result is obtained in the case of the Euclidean metric on R
3.

1 Introduction

First of all we shortly recall the physical motivation of the problem. See Section 5.1 of [5]
for a detailed discussion.

We consider propagation of time-harmonic electromagnetic waves of frequency ω in a
medium with the zero conductivity, unit magnetic permeability, and the dielectric per-
meability tensor of the form

εij = n2δij +
1

k
χij , (1.1)

where k = ω/c is the wave number, c being the light velocity. Here n > 0 is a function
of a point x ∈ R3, and the tensor χij = χij(x) determines a small anisotropy of the
medium. The smallness is emphasized by the factor 1/k. Equation (1.1) was suggested
by Yu. Kravtsov [2]. By some physical arguments [3], the tensor χ must be Hermitian,
χij = χ̄ji.
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In the scope of the zero approximation of geometric optics, propagation of electromag-
netic waves in such media is described as follows. Exactly as in the background isotropic
medium, light rays are geodesics of the Riemannian metric

dt2 = n2(x)|dx|2; (1.2)

the electric vector E(x) and magnetic vector H(x) are orthogonal to each other as well
as to the ray; and the amplitude A2 = |E|2 = |H|2 satisfies A = C/

√
nJ along a ray,

where J is the geometric divergence and the constant C depends on the ray. The only
difference between a slightly anisotropic medium and the background isotropic one consists
of the wave polarization. The polarization vector η = n−1A−1E satisfies the equation
(generalized Rytov’s law)

Dη

dt
=

i

2n2
πγ̇χη (1.3)

along a geodesic ray γ(t). Here t is the arc length of γ in metric (1.2), γ̇ = dγ/dt is the
speed vector of γ, πγ̇ is the orthogonal projection onto the plane γ̇⊥, and D/dt = γ̇k∇k is
the covariant derivative along γ in metric (1.2). The right-hand side of (1.3) is understood
as follows: πγ̇ and χ are considered as linear operators on T C

γ(t) = C3, and πγ̇χη is the

result of action of the operator πγ̇χ on the complex vector η ∈ γ̇⊥. Here γ̇⊥ is the two-
dimensional complex vector space consisting of complex vectors orthogonal to the real
vector γ̇ ∈ R3 = Tγ(t) ⊂ T C

γ(t) = C3. Introducing the notation

f =
i

2n2
χ, (1.4)

we rewrite (1.3) in the form
Dη

dt
= πγ̇fη. (1.5)

Observe that f is a skew-Hermitian operator, fij = −f̄ji.
Let us now consider the inverse problem. Assume a medium under investigation to

be contained in a bounded domain D ⊂ R
3 with a smooth boundary. The background

isotropic medium is assumed to be known, i.e., metric (1.2) is given. The domain D
is assumed to be convex with respect to the metric, i.e., for any two boundary points
x0, x1 ∈ ∂D, there exists a unique geodesic γ : [0, 1] → D such that γ(0) = x0, γ(1) = x1.
We consider the inverse problem of determining the anisotropic part χij of the dielectric
permeability tensor or, equivalently, of determining the tensor f on (1.5). To this end we
can fulfill tomographic measurements of the following type. For any unit speed geodesic
γ : [0, l] → D between boundary points, we can choose an initial value η0 = η(0) ∈ γ̇⊥(0)
of the polarization vector and measure the final value η1 = η(l) ∈ γ̇⊥(l) of the solution to
equation (1.5). In other words, we assume the linear operator γ̇⊥(0) → γ̇⊥(l), η0 7→ η1 to
be known for every unit speed geodesic γ : [0, l] → D between boundary points. Instead
of (1.5), we will consider the corresponding operator equation

DŨ(t)

dt
= fγ̇(t)Ũ(t), (1.6)

where fγ̇(t) : γ̇⊥(t) → γ̇⊥(t) is the restriction of the operator πγ̇(t)f(γ(t)) to the plane

γ̇⊥(t), and the solution is considered as a linear operator Ũ(t) : γ̇⊥(t) → γ̇⊥(t). Equation
(1.6) has a unique solution satisfying the initial condition

Ũ(0) = E, (1.7)
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where E is the identity operator. Since fγ̇(t) is a skew-Hermitian operator, the solution

Ũ(t) is a unitary operator. The final value of the solution

Φ̃[f ](γ) = Ũ(l) ∈ GL(γ̇⊥(l))

is the data for the inverse problem. Given the function Φ̃[f ] on the set of unit speed
geodesics between boundary points, we have to determine the tensor field f = (fij(x)) on
the domain D.

We consider the inverse problem in a more general setting. Instead of a domain D ⊂ R3

with metric (1.2), we will consider a compact Riemannian manifold (M, g) of an arbitrary
dimension n ≥ 3, and an arbitrary complex tensor field f = (fij) on M . In such a setting,
equation (1.6) makes sense along a geodesic γ. We will subordinate the manifold (M, g)
to some conditions that guarantee smoothness of the data Φ̃[f ] in the case of a smooth f .

The two-dimensional case of n = 2 is not interesting since fγ̇ and Ũ become scalar
functions and the solution to the scalar equation (1.6) is given by an explicit formula in
this case. Therefore the inverse problem is reduced to the inversion of the ray transform
I on second rank tensor fields, see the remark before Theorem 5.2.1 of [5].

Equation (1.6) can be slightly simplified. For a point x ∈ M , let T C

x M be the com-
plexification of the tangent space TxM . Instead of considering the operator Ũ(t) on γ̇⊥(t),
we define the linear operator

U(t) : T C

γ(t)M → T C

γ(t)M

by
U(t)|γ̇⊥(t) = Ũ(t), U(t)γ̇(t) = γ̇(t).

If Ũ(t) satisfies (1.6)–(1.7), then U(t) solves the initial value problem

DU

dt
= (πγ̇fπγ̇)U, U(0) = E. (1.8)

Equation (1.8) is more handy than (1.6) since all operators participating in (1.8) are
defined on the whole of T C

γ(t)M . The inverse problem consists of recovering the tensor

field f from the data Φ[f ](γ) = U(l) known for every unit speed geodesic γ : [0, l] → M
between boundary points. Let us emphasize that the inverse problem is strongly nonlinear,
i.e., the data Φ[f ] depends on f in a nonlinear manner.

The three-dimensional case, n = dim M = 3, is of the most importance for applications
as we have shown above. On the other hand, the three-dimensional case is mathematically
the exceptional one because, for a skew-symmetric f , the solution to the inverse problem
is not unique. The non-uniqueness is discussed in Section 4.

The main result of the present article is the local uniqueness theorem: the solution to
the inverse problem is unique (up to a natural obstruction in the three-dimensional case)
if the tensor field f is C1-small. See Theorem 5.1 below for the precise statement.

Our method of investigating the inverse problem is a combination of approaches used
in [9] and in Chapter 5 of [5]. First of all, following [9], we reduce our nonlinear problem to
a linear one as follows. Let fi (i = 1, 2) be two tensor fields and Ui(t) be the corresponding
solutions to (1.8) with f = fi. Then u = U−1

1 U2 − E satisfies

Du

dt
= pπγ̇(f2 − f1)πγ̇q, u(0) = 0, (1.9)
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where p = U−1
1 and q = U2. We consider p and q as operator-valued weights which are

close to the unit operator if fi are C1-small. Assuming the weights p and q to be fixed,
the solution u(t) to the initial value problem (1.9) depends linearly on f = f2 − f1. We
study the linear inverse problem of recovering the tensor field f = f2 − f1 from the data
F [f ](γ) = u(l) given for all geodesics γ : [0, l] → M between boundary points. In the
case of a symmetric tensor field f and of unit weights, this linear problem was considered
in Chapter 5 of [5]. We will demonstrate that the same approach works in the case of an
arbitrary f and of weights close to the unit one.

There is one more opportunity to extract a linear inverse problem from equation (1.8).
Indeed, if W (t) = det U(t) is the Wronskian, then the function ϕ(t) = ln W (t) satisfies

dϕ(t)

dt
= tr (πγ̇fπγ̇).

Therefore, for every unit speed geodesic γ : [0, l] → M between boundary points, the
integral

S[f ](γ) =

l
∫

0

tr (πγ̇(t)f(γ(t))πγ̇(t))dt (1.10)

is expressed through the data Φ[f ] by the formula

S[f ](γ) = ln det Φ[f ](γ).

The data S[f ] depends linearly on f . Of course, some information is lost while the data
Φ[f ] is replaced with S[f ]. In particular, S[f ] is independent of the skew-symmetric part
of f .

We finally note that main results of the article are new and nontrivial in the case of
M ⊂ Rn, n ≥ 3, with the standard Euclidean metric. If a reader is not familiar with the
tensor analysis machinery on the tangent bundle of a Riemannian manifold, he/she can
first read the article for the latter simplest case.

The article is organized as follows. Section 2 contains some preliminaries concerning
Riemannian geometry and tensor analysis. In particular, we define some class of Rieman-
nian manifolds for which the problem can be posed in the most natural way. Instead of
considering the ordinary differential equation (1.8) along individual geodesics, we intro-
duce a partial differential equation on the unit tangent bundle and pose an equivalent
version of the problem in terms of the latter equation. In Section 3, we consider the
corresponding linear problem and prove the uniqueness for weights sufficiently close to
the unit in the case of n ≥ 4. Section 4 discusses the three-dimensional case. In Section
5, we check that the weights p and q are sufficiently close to the unit for a C1-small f and
prove our main result, Theorem 5.1, on the local uniqueness in the nonlinear problem.
In the final Section 6, we investigate the question: to which extent is a symmetric tensor
field f determined by data (1.10). We give a complete answer to the question in the case
of M = R3 with the Euclidean metric.
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2 Posing the problem and introducing

some notations

A smooth compact Riemannian manifold (M, g) with boundary is said to be a convex
non-trapping manifold (CNTM briefly) if it satisfies two conditions: (1) the boundary
∂M is strictly convex, i.e., the second fundamental form

II(ξ, ξ) = 〈∇ξν, ξ〉 for ξ ∈ Tx(∂M)

is positive definite for every boundary point x ∈ ∂M , where ν is the outward unit normal
vector to the boundary and ∇ξ is the covariant derivative in the direction ξ; and (2) for
every x ∈ M and 0 6= ξ ∈ TxM , the maximal geodesic γx,ξ(t) determined by the initial
conditions γx,ξ(0) = x and γ̇x,ξ(0) = ξ is defined on a finite segment [τ−(x, ξ), τ+(x, ξ)].
In what follows, we use the notations γx,ξ and τ±(x, ξ) many times. They are always
understood in the sense of this definition.

Remark. In [5], the term CDRM (compact dissipative Riemannian manifold) is used
instead of CNTM. In the case of M ⊂ R

n with the standard Euclidean metric, this
definition means that M is strictly convex.

By TM = {(x, ξ) | x ∈ M, ξ ∈ TxM} we denote the tangent bundle and by

ΩM = {(x, ξ) ∈ TM | |ξ|2 = 〈ξ, ξ〉 = gij(x)ξiξj = 1},

the unit sphere bundle. Its boundary can be represented as the union ∂ΩM = ∂+ΩM ∪
∂−ΩM , where

∂±ΩM = {(x, ξ) ∈ ΩM | x ∈ ∂M, ±〈ξ, ν(x)〉 ≥ 0}
is the manifold of outward (inward) unit vectors. If γ : [0, l] → M is a unit speed geodesic
between boundary points, then (γ(0), γ̇(0)) ∈ ∂−ΩM and (γ(l), γ̇(l)) ∈ ∂+ΩM .

By T C

x M we denote the complexification of the tangent space TxM . The metric g
determines the Hermitian scalar product on T C

x M

〈η, ζ〉 = gijη
iζ̄j . (2.1)

For 0 6= ξ ∈ TxM , by T⊥
x,ξM = {η ∈ T C

x M | 〈η, ξ〉 = 0} we denote the orthogonal

complement of ξ and by πξ : T C

x M → T C

x M , the orthogonal projection onto T⊥
x,ξM .

Let τ r
s M be the bundle of complex tensors that are r times contravariant an s times

covariant. Elements of the section space C∞(τ r
s M) are smooth tensor fields of rank

(r, s) on M . In the domain of a local coordinate system, such a field u ∈ C∞(τ r
s M)

can be represented by the family of smooth functions, u = (ui1...ir
j1...js

(x)), the coordinates
of u, where each index takes values from 1 to n = dim M . The metric g determines
canonical isomorphisms τ r

s M ∼= τ r+s
0 M ∼= τ 0

r+sM . We will consider the isomorphisms as
identifications. So, we do not distinct contra- and covariant tensors but use contra- and
covariant coordinates of the same tensor. For example, for u ∈ C∞(τ 0

2 M) = C∞(τ 1
1 M) =

C∞(τ 2
0 M),

uij = giku
k·
·j = gjku

·k
i· = gikgjlu

kl.

In particular, such a tensor field determines the linear operator

u(x) : T C

x M → T C

x M, (uη)i = ui·
·jη

j
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at any point x ∈ M . The product of two such operators is written in coordinates as
(uv)ij = uikv

k·
·j . The dual operator has the coordinates u∗

ij = ūji. The operator is
Hermitian (symmetric) if and only if uij = ūji (uij = uji). The scalar product (2.1)
is extended to tensors by the formula 〈u, v〉 = ui1...im v̄i1...ir and determines the norm
|u|2 = 〈u, u〉. For u, v ∈ C∞(τ 1

1 M), the norm of the product satisfies |uv| ≤ √
n|u||v|,

where n = dim M .
We will also widely use semibasic tensor fields introduced in [4], see either Section

3.4 of [5] or Section 2.5 of [7] for a detailed presentation. Let βr
sM be the bundle of

complex semibasic tensor fields of rank (r, s). It is a subbundle of τ r
s (TM) isomorphic to

the induced bundle π∗(τ r
s M), where π : TM → M is the projection of the tangent bundle.

A tensor u ∈ T r
s,(x,ξ)(TM) at (x, ξ) ∈ TM is semibasic if it is “pure contravariant in the

ξ-variable and pure covariant in x”, i.e.,

u = ui1...ir
j1...js

∂

∂ξi1
⊗ · · · ⊗ ∂

∂ξir
⊗ dxj1 ⊗ · · · ⊗ dxjs.

For U ⊂ TM , by C∞(βr
sM ; U) we denote the space of smooth sections over U . The

notation C∞(βr
sM ; TM) is abbreviated to C∞(βr

sM). In the domain of a local coordinate
system, such a field u ∈ C∞(βr

sM) can be represented by the family of its coordinates, u =
(ui1...ir

j1...js
(x, ξ)), which are smooth functions of 2n variables (x, ξ) = (x1, . . . , xn, ξ1, . . . , ξn).

All the content of the previous paragraph is extended to semibasic tensor fields, where
g remains the metric on M in the identification of contra- and covariant tensors. In
particular, u ∈ C∞(β1

1M) determines the linear operator u(x, ξ) : T C

x M → T C

x M for every
(x, ξ) ∈ TM . There are two important first order differential operators

v

∇,
h

∇: C∞(βr
sM) → C∞(βr

s+1M)

which are called the vertical and horizontal covariant derivatives. The operators are
defined in local coordinates by the formulas

v

∇ku
i1...ir
j1...js

=
∂

∂ξk
ui1...ir

j1...js
,

h

∇ku
i1...ir
j1...js

=
∂

∂xk
ui1...ir

j1...js
− Γp

kqξ
q ∂

∂ξp
ui1...ir

j1...js
+

+

r
∑

a=1

Γia
kpu

i1...ia−1pia+1...ir
j1...js

−
s

∑

a=1

Γp
kja

ui1...ir
j1...ja−1pja+1...js

,

where Γi
jk are Christoffel symbols. See Sections 3.4–3.6 of [5] for properties of these

operators. Note that
v

∇= ∂/∂ξ and
h

∇= ∂/∂x in the case of M ⊂ Rn with the standard
Euclidean metric and of Cartesian coordinates.

The operator

H = ξi
h

∇i : C∞(βr
sM) → C∞(βr

sM)

is of the most importance in the present article. It is called the differentiation with respect
to the geodesic flow.
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Given a tensor field f ∈ C∞(τ 1
1 M) on a CNTM (M, g), let us consider the boundary

value problem

HU(x, ξ) = πξf(x)πξU(x, ξ) on ΩM, U |∂−ΩM = E, (2.2)

where E is the identity operator. A solution U = U(x, ξ) is assumed to be a section of the
bundle β1

1M over ΩM , i.e., U ∈ C(β1
1M ; ΩM). In the case of M ⊂ Rn with the standard

Euclidean metric, f and U can be considered as n × n-matrix valued functions of x ∈ M
and of (x, ξ) ∈ M × Sn−1 respectively. Problem (2.2) has a unique solution. Indeed, if we
restrict (2.2) to an orbit of the geodesic flow, i.e., if we set x = γ(t) and ξ = γ̇(t) for a unit
speed geodesic γ : [0, l] → M with γ(0) ∈ ∂M , then we immediately arrive to the initial
value problem (1.8). The boundary value problem (2.2) is thus equivalent to the family
of initial value problems (1.8) considered for all unit speed geodesics simultaneously. The
inverse problem is now formulated as follows: one has to recover the tensor field f given
the trace

Φ[f ] = U |∂+ΩM (2.3)

of the solution to (2.2).
In order to abbreviate further formulas, let us introduce the operator Pξ on tensors

which maps f(x) to πξf(x)πξ for (x, ξ) ∈ ΩM , and write (2.2) in the shorter form

HU = (Pξf)U, U |∂−ΩM = E. (2.4)

Because of the factor Pξ and of the boundary condition on ∂−ΩM , the solution U to (2.4)
satisfies

U(x, ξ)ξ = U∗(x, ξ)ξ = ξ. (2.5)

Therefore the non-trivial part of the data (2.3) consists of the restrictions Φ[f ](x, ξ)|T⊥

x,ξ
M

for (x, ξ) ∈ ∂+ΩM . This agrees with the above discussion of the relationship between
(1.6) and (1.8). The solution U is continuous on ΩM and C∞-smooth on ΩM \ Ω(∂M)
as one can easily prove using the strict convexity of the boundary.

Concluding the section, let us mention one more inverse problem that is not considered
in the present article. Let gl(T C

x M) be the space of all linear operators on T C

x M . The
operator Pξ participating in (2.4) is the orthogonal projection of the space gl(T C

x M) onto
the subspace

{f ∈ gl(T C

x M) | fξ = f ∗ξ = 0}.
Let us introduce the smaller subspace

{f ∈ gl(T C

x M) | fξ = f ∗ξ = 0, tr f = f i
i = 0}

and denote by Qξ the orthogonal projection onto the latter subspace. The corresponding
inverse problem for the equation

HU = (Qξf)U, U |∂−ΩM = E (2.6)

is also of a great applied interest. To explain the physical meaning of (2.6), let us return
to equation (1.5) considered in the three-dimensional case for a skew-Hermitian tensor
f . The polarization vector η on (1.5) is a complex two-dimensional vector subordinate to
one real condition |η| = 1. Therefore η can be described by three real parameters. Two of

7



these parameters can be chosen to determine the shape and position of the polarization
ellipse on the plane γ̇⊥, while the last parameter is the phase of the electromagnetic
wave. See section 6.1 of [5] for a detailed discussion of the subject. Only the first two
of these parameters are measured in practice. Deleting the wave phase from the data is
mathematically equivalent to replacing the operator Pξ with Qξ. The authors intend to
consider the corresponding inverse problem for (2.6) in a subsequent paper.

3 Linear problem

Let (M, g) be a CNTM. Choose two semibasic tensor fields p, q ∈ C∞(β1
1M ; ΩM) satisfy-

ing
p∗(x, ξ)ξ = ξ, q(x, ξ)ξ = ξ. (3.1)

For a tensor field f ∈ C∞(τ 1
1 M), consider the boundary value problem on ΩM

Hu = p(Pξf)q, u|∂−ΩM = 0. (3.2)

The problem has a unique solution u ∈ C(β1
1M ; ΩM) and, in virtue of (3.1), the solution

satisfies
u(x, ξ)ξ = u∗(x, ξ)ξ = 0. (3.3)

In this section, we consider the inverse problem of recovering the tensor field f from the
data

F [f ] = u|∂+ΩM . (3.4)

The factors p and q on (3.2) are considered as weights. We will assume the weights to
be close to the unit weight E in the following sense: the inequalities

|p − E| < ε, |q − E| < ε, |
v

∇p| < ε, |
v

∇q| < ε (3.5)

hold uniformly on ΩM with the norm | · | defined in Section 2. The value of ε will be
specified later.

Equation (3.2) is initially considered on ΩM . To get some freedom in treating the
equation, we extend it to the manifold T 0M = {(x, ξ) ∈ TM | ξ 6= 0} of nonzero vectors.
The weights are assumed to be positively homogeneous of zero degree in ξ

p(x, tξ) = p(x, ξ), q(x, tξ) = q(x, ξ) for t > 0.

Then the right-hand side of (3.2) is positively homogeneous in ξ of zero degree because f
is independent of ξ. The solution u must be extended to T 0M as a homogeneous function
of degree −1

u(x, tξ) = t−1U(x, ξ) for t > 0

because the operator H increase the degree of homogeneity by 1.
Let us discuss smoothness properties of the solution u. It can be expresses by the

explicit formula

u(x, ξ) =

0
∫

τ−(x,ξ)

Υt,0
γ

[

p(γ(t), γ̇(t))Pγ̇(t)f(γ(t))q(γ(t), γ̇(t))
]

dt,

8



where γ = γx,ξ and Υt,0
γ is the parallel transport of tensors along the geodesic γ from

the point γ(t) to γ(0) = x. The integrand is a smooth function. Therefore smoothness
properties of u are determined by that of the integration limit τ−(x, ξ). The latter function
is C∞-smooth on T 0M \ T (∂M) but has singularities on T 0(∂M). Therefore some of
integrals considered below are improper and we have to verify their convergence. The
verification is performed in the same way as in Section 4.6 of [5]. So, in order to simplify
the presentation, we will pay no attention to these singularities.

Besides (3.5), we will impose some smallness condition on the curvature of (M, g). For
(x, ξ) ∈ ΩM , let K(x, ξ) be the supremum of the absolute values of sectional curvatures
at the point x over all two-dimensional subspaces of TxM containing ξ. Define

k(M, g) = sup
(x,ξ)∈∂−ΩM

τ+(x,ξ)
∫

0

tK(γx,ξ(t), γ̇x,ξ(t))dt. (3.6)

Theorem 3.1 For any n ≥ 4, there exist positive numbers δ = δ(n) and ε = ε(n) such
that, for any n-dimensional CNTM (M, g) satisfying

k(M, g) < δ (3.7)

and for any weights p, q ∈ C∞(β1
1M ; ΩM) satisfying (3.1) and (3.5), every tensor field f ∈

C∞(τ 1
1 M) can be uniquely recovered from the trace (3.4) of the solution to the boundary

value problem (3.2) and the stability estimate

‖f‖L2 ≤ C‖F [f ]‖H1 (3.8)

holds with a constant C independent of f . In the case of n = 3, the same statement is
true for a symmetric tensor field f .

In the case of a real symmetric f and unit weights, this theorem is a partial case of
Theorem 5.2.2 of [5]. We will show that the same proof works with some modifications
for Theorem 3.1.

Proof of Theorem 3.1. We rewrite equation (3.2) in the form

Hu = Pξf + r, (3.9)

where
r = (p − E)Pξf + pPξf(q − E). (3.10)

The remainder r is small by (3.5). Because of (3.3), the function u = (uij(x, ξ)) is
orthogonal to ξ in both indices

ξiuij = ξjuij = 0. (3.11)

We write down the Pestov identity for the semibasic tensor field u (see Lemma 4.4.1
of [5] for the case of a real u and Lemma 5.1 of [6] for the general case)

2 Re〈
h

∇u,
v

∇Hu〉 = |
h

∇u|2 +
h

∇iv
i +

v

∇iw
i −R1[u], (3.12)

where 〈·, ·〉 and | · | are the scalar product and norm on semibasic tensors defined in
Section 2,

vi = Re
(

ξi
h

∇jui1i2 ·
v

∇j ūi1i2 − ξj
v

∇iui1i2 ·
h

∇jūi1i2

)

, (3.13)
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wi = Re
(

ξj
h

∇iui1i2 ·
h

∇j ūi1i2

)

, (3.14)

R1[u] = Rkplqξ
pξq

v

∇kui1i2 ·
v

∇lūi1i2 + Re
(

(Ri1
pqju

pi2 + Ri2
pqju

i1p)ξq
v

∇jūi1i2

)

, (3.15)

and (Rijkl) is the curvature tensor. Identity (3.12) holds on any open D ⊂ TM for every
u ∈ C2(β1

1M ; D). In our case, D = T 0M \ T (∂M) and u ∈ C∞(β1
1M ; D) as is shown

above.
The most part of the proof deals with the left-hand side of (3.12). We will first

transform it by distinguishing some divergent terms and then will estimate it.
From (3.9)

〈
h

∇u,
v

∇Hu〉 = 〈
h

∇u,
v

∇(Pξf)〉 + 〈
h

∇u,
v

∇r〉. (3.16)

We will first investigate the first term on the right-hand side of (3.16). To this end we
represent f as

fij(x) = f̃ij(x, ξ) + ξjai(x, ξ) + ξib̄j(x, ξ) + ξiξjc(x, ξ), (3.17)

where (f̃ij) is a semibasic tensor field orthogonal to ξ in both indices

f̃ijξ
i = f̃ijξ

j = 0, (3.18)

semibasic covector fields a and b are orthogonal to ξ

aiξ
i = biξ

i = 0, (3.19)

and c(x, ξ) is a scalar function. One can easily check the existence and uniqueness of the
representation. The (vector versions of the) fields a and b are expressed through f by the
formulas

a =
1

|ξ|2πξfξ, b =
1

|ξ|2πξf
∗ξ. (3.20)

As follows from (3.17)–(3.19),
Pξf = f̃

or in coordinates
(Pξf)ij = f̃ij = fij − aiξj − b̄jξi − cξiξj. (3.21)

Differentiating the last equality with respect to ξ and using the fact that f is independent
of ξ, we obtain

v

∇k(Pξf)ij = −ξj

v

∇kai − ξi

v

∇kb̄j − ξiξj

v

∇kc − gjkai − gik b̄j − (gikξj + gjkξi)c.

Therefore

〈
h

∇u,
v

∇(Pξf)〉 =
h

∇kuij ·
v

∇k(Pξf̄)ij =

=
h

∇kuij
(

− ξj

v

∇kāi − ξi

v

∇kbj − ξiξj

v

∇kc̄ − gjkāi − gikbj − (gikξj + gjkξi)c̄
)

.

The tensor
h

∇kuij is orthogonal to ξ in the indices i and j as follows from (3.11). Therefore
the last formula is simplified to the following one:

〈
h

∇u,
v

∇(Pξf)〉 = −
h

∇puip · āi −
h

∇pupi · bi.
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Introducing the semibasic covector fields
h

δ1u and
h

δ2u by the equalities

(
h

δ1u)i =
h

∇puip, (
h

δ2u)i =
h

∇pupi, (3.22)

we write the result in the form

〈
h

∇u,
v

∇(Pξf)〉 = −〈
h

δ1u, a〉 − 〈
h

δ2u, b̄〉. (3.23)

This implies the estimate

2 Re〈
h

∇u,
v

∇(Pξf)〉 ≤ β

2
(|

h

δ1u|2 + |
h

δ2u|2) +
2

β
(|a|2 + |b|2), (3.24)

where β is an arbitrary positive number.

Next, we transform the expression |
h

δ1u|2 by distinguishing a divergent term

|
h

δ1u|2 = (
h

δ1u)i(
h

δ1ū)i =
h

∇pu
ip ·

h

∇qūiq =

=
h

∇p(u
ip

h

∇qūiq) − uip
h

∇p

h

∇qūiq =
h

∇p(u
ip

h

∇qūiq) − u·p
i·

h

∇p

h

∇qū
iq. (3.25)

By the commutator formula for horizontal derivatives (see Theorem 3.5.2 of [5]),

h

∇p

h

∇qū
iq =

h

∇q

h

∇pū
iq − Rk

jpqξ
j

v

∇kū
iq + Ri

jpqū
jq + Rq

jpqū
ij.

Substituting this value into the previous formula, we obtain

|
h

δ1u|2 = Re
(

− u·p
i·

h

∇q

h

∇pū
iq +

h

∇p(u
ip

h

∇qūiq)
)

+ R2[u], (3.26)

where
R2[u] = Re

(

u·p
i· (R

k
jpqξ

j
v

∇kū
iq − Ri

jpqū
jq − Rq

jpqū
ij)

)

.

We now transform the first summand on the right-hand side of (3.26) in the order
reverse to that used in (3.25)

|
h

δ1u|2 = Re
(

−
h

∇q(u
·p
i·

h

∇pū
iq) +

h

∇qu
·p
i· ·

h

∇pū
iq +

h

∇p(u
ip

h

∇qūiq)
)

+ R2[u].

Introducing the semibasic vector field ṽ1 by the formula

(ṽ1)
i = Re

(

uji
h

∇kūjk − ujk

h

∇kūji
)

, (3.27)

we write the result in the form

|
h

δ1u|2 = Re
(

h

∇iujk ·
h

∇kūji

)

+
h

∇i(ṽ1)
i + R2[u]. (3.28)

In the same way, we obtain

|
h

δ2u|2 = Re
(

h

∇iujk ·
h

∇j ūik

)

+
h

∇i(ṽ2)
i + R3[u] (3.29)
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with

(ṽ2)
i = Re

(

uij
h

∇kūkj − ukj

h

∇kūij
)

(3.30)

and
R3[u] = Re

(

up·
·i (R

k
jpqξ

j
v

∇kū
qi − Rq

jpqū
ji − Ri

jpqū
qi)

)

.

Taking the sum of (3.28) and (3.29), we have

|
h

δ1u|2 + |
h

δ2u|2 = Re
(

h

∇iujk ·
h

∇j ūik +
h

∇iujk ·
h

∇kūji

)

+
h

∇iṽ
i + R4[u], (3.31)

where
ṽ = ṽ1 + ṽ2, R4[u] = R2[u] + R3[u].

Introduce the semibasic tensor field z = (zijk) by the formula

h

∇iujk =
ξi

|ξ|2 (Hu)jk + zijk. (3.32)

The idea of this new notation is that the tensor z is orthogonal to ξ in all its indices

ξizijk = ξjzijk = ξkzijk = 0, (3.33)

while the tensor
h

∇u = (
h

∇iujk) has the mentioned property only in the last two indices.
The summands on the right-hand side of (3.32) are orthogonal to each other, so

|
h

∇u|2 =
1

|ξ|2 |Hu|2 + |z|2. (3.34)

The first two terms on the right-hand side of (3.31) can be expressed through z. Indeed,
one easily see with the help of (3.32) and (3.33) that

Re
(

h

∇iujk ·
h

∇j ūik +
h

∇iujk ·
h

∇kūji

)

= Re (zijkz̄jik + zijkz̄kji) ≤ 2|z|2.

With the help of the last inequality, (3.31) implies the estimate

|
h

δ1u|2 + |
h

δ2u|2 ≤ 2|z|2 +
h

∇iṽ
i + R4[u] (3.35)

which, together with (3.24), gives

2 Re〈
h

∇u,
v

∇(Pξf)〉 ≤ β|z|2 +
2

β
(|a|2 + |b|2) +

β

2

h

∇iṽ
i +

β

2
R4[u].

Substitute values (3.20) for a and b into the last formula

2 Re〈
h

∇u,
v

∇(Pξf)〉 ≤ β|z|2 +
2

β|ξ|4 (|πξfξ|2 + |πξf
∗ξ|2) +

β

2

h

∇iṽ
i +

β

2
R4[u]. (3.36)

Next, we estimate the second term on the right-hand side of (3.16). We differentiate
equality (3.10) with respect to ξ taking the independence f of ξ into account

v

∇r =
v

∇ ((p − E)Pξ) f +
v

∇(pPξ)f(q − E) + pPξf
v

∇q.
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In what follows in the proof, we denote different constants depending only on n = dim M
by the same letter C. On using (3.5), we obtain from the last formula

|
v

∇r| ≤ Cε

|ξ| |f |.

From this

2 Re〈
h

∇u,
v

∇r〉 ≤ Cε(|
h

∇u|2 +
1

|ξ|2 |f |
2). (3.37)

Combining (3.36) and (3.37), we obtain from (3.16)

2 Re〈
h

∇u,
v

∇Hu〉 ≤ β|z|2+ 2

β|ξ|4 (|πξfξ|2+|πξf
∗ξ|2)+β

2

h

∇iṽ
i+Cε(|

h

∇u|2+ 1

|ξ|2 |f |
2)+

β

2
R4[u].

(3.38)
Estimating the left-hand side of the Pestov identity (3.12) by (3.38), we obtain for

|ξ| = 1

|
h

∇u|2+
v

∇iw
i−β|z|2− 2

β
(|πξfξ|2+|πξf

∗ξ|2)−Cε(|
h

∇u|2+|f |2) ≤
h

∇i(
β

2
ṽi−vi)+R[u], (3.39)

where

R[u] = R1[u] +
β

2
R4[u].

We multiply inequality (3.39) by the volume form dΣ = |dxω(ξ)∧ dV n(x)|, integrate over
ΩM , and transform the integrals of divergent terms by Gauss-Ostrogradskii formulas (see
Theorem 3.6.3 of [5])

∫

ΩM

[

|
h

∇u|2 + (n − 2)|Hu|2 − β|z|2 − 2

β
(|πξfξ|2 + |πξf

∗ξ|2) − Cε(|
h

∇u|2 + |f |2)
]

dΣ ≤

≤
∫

∂ΩM

〈β
2
ṽ − v, ν〉dΣ2n−2 +

∫

ΩM

R[u]dΣ. (3.40)

The second term on the left-hand side has appeared because w is positively homogeneous
of degree −1 in ξ and satisfies 〈ξ, w〉 = |Hu|2 as is seen from (3.14). Substituting the

value |
h

∇u|2 = |z|2 + |Hu|2 from (3.34), we write the result in the form

∫

ΩM

[

(1 − β − Cε)|z|2 + (n − 1 − Cε)|Hu|2 − 2

β
(|πξfξ|2 + |πξf

∗ξ|2) − Cε|f |2
]

dΣ ≤

≤
∫

∂ΩM

〈β
2
ṽ − v, ν〉dΣ2n−2 +

∫

ΩM

R[u]dΣ. (3.41)

Assuming β ≤ 1, integrals on the right-hand side of (3.41) can be estimated exactly
as in Section 5.5 of [5]

∣

∣

∣

∣

∣

∣

∫

ΩM

R[u]dΣ

∣

∣

∣

∣

∣

∣

≤ Ck(M, g)

∫

ΩM

|
h

∇u|2dΣ ≤ Cδ

∫

ΩM

|
h

∇u|2dΣ, (3.42)
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∣

∣

∣

∣

∣

∣

∫

∂ΩM

〈β
2
ṽ − v, ν〉dΣ2n−2

∣

∣

∣

∣

∣

∣

≤ D‖u|∂+ΩM‖2
H1, (3.43)

where k(M, g) is defined by (3.6). The second inequality on (3.42) is valid because of
(3.7). The constant D on (3.43) depends on (M, g), unlike the constant C on (3.42)
which depends only on n.

Combining (3.41)–(3.43) and using again the equality |
h

∇u|2 = |z|2 + |Hu|2, we obtain

∫

ΩM

[

(1−β−Cε−Cδ)|z|2 +(n−1−Cε−Cδ)|Hu|2− 2

β
(|πξfξ|2 + |πξf

∗ξ|2)−Cε|f |2
]

dΣ ≤

≤ D‖u|∂+ΩM‖2
H1 (3.44)

with some new constant C depending only on n.
Let us compare |Hu| and |Pξf |. The estimate |r| < Cε|f | follows from (3.5) and

(3.10). The latter, together with (3.9), implies

|Hu|2 ≥ |Pξf |2 − Cε|f |2. (3.45)

Using the last inequality, we transform (3.44) to the final form

∫

M

∫

ΩxM

[

(1 − β − Cε − Cδ)|z|2 + (n − 1 − Cε − Cδ)|Pξf |2−

− 2

β
(|πξfξ|2 + |πξf

∗ξ|2) − Cε|f |2
]

dωx(ξ)dV n(x) ≤ D‖u|∂+ΩM‖2
H1 . (3.46)

Let us remind that β is an arbitrary number satisfying 0 < β ≤ 1.

Lemma 3.2 For every Riemannian manifold (M, g) of dimension n ≥ 4 and every point
x ∈ M , the Hermitian form

B(f, f) =

∫

ΩxM

[

(n − 1)|Pξf |2 − 2(|πξfξ|2 + |πξf
∗ξ|2)

]

dωx(ξ)

is positive definite on the space of second rank tensors at x. Moreover, the estimate

B(f, f) ≥ c|f |2

holds with a positive constant c depending only on n. In the case of n = 3, the same
statement is valid for symmetric tensors.

The proof of the lemma will be given later, and now we finish the proof of Theorem
3.1 by making use of the lemma.

By the lemma, the inequality

c‖f‖2
L2 = c

∫

M

|f |2 dV n(x) ≤
∫

M

∫

ΩxM

[

(1 − β − Cε − Cδ)|z|2+
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+(n − 1 − Cε − Cδ)|Pξf |2 −
2

β
(|πξfξ|2 + |πξf

∗ξ|2) − Cε|f |2
]

dωx(ξ)dV n(x) (3.47)

holds for β = 1, ε = δ = 0. By continuity and by estimates |Pξf | ≤ |f |, |πξfξ| ≤
|f |, |πξf

∗ξ| ≤ |f | for |ξ| = 1, the same inequality holds for some positive c, ε, δ, and β
independent of f and satisfying 1 − β − Cε − Cδ ≥ 0. Combining (3.46) and (3.47), we
obtain

‖f‖2
L2 ≤ C‖u|∂+ΩM‖2

H1 = C‖F [f ]‖2
H1

with C = D/c. This finishes the proof of Theorem 3.1.

Proof of Lemma 3.2. One easily checks the equality B(f, f) = B(u, u)+B(v, v) for
a complex tensor f represented as f = u + iv with real u and v. Therefore it suffices to
prove the statement for a real tensor f .

The corresponding symmetric bilinear form is

B(f, h) =

∫

ΩxM

[

(n − 1)〈Pξf, h〉 − 2(〈πξfξ, hξ〉 + 〈πξf
∗ξ, h∗ξ〉)

]

dωx(ξ).

Obviously, B(f, h) = 0 for a symmetric f and skew-symmetric h. Therefore, it suffices to
prove the positiveness of B on the spaces of real symmetric and skew-symmetric tensors
separately.

The positiveness of B on the space of real symmetric tensors is proved in Lemma 5.6.1
of [5], where πξfξ is denoted by Pξjξf .

Thus, we have to consider the quadratic form B on the space of real skew-symmetric
tensors. On making use of an orthonormal basis, we identify TxM with Rn endowed with
the standard scalar product and identify ΩxM with the unit sphere Ω ⊂ Rn. So

1

ω
B(f, f) =

1

ω

∫

Ω

[

(n − 1)|Pξf |2 − 4|πξfξ|2
]

dω(ξ), (3.48)

where ω is the volume of Ω and dω is the standard volume form on Ω.
For a skew-symmetric f

πξfξ = fξ (3.49)

since fξ is orthogonal to ξ. Therefore formulas (3.20) and (3.21) are simplified to the
following ones:

a = −b = fξ, (Pξf)ij = fij − (fξ)iξj + ξi(fξ)j

for |ξ| = 1. Using the last equality and 〈fξ, ξ〉 = 0, we easily calculate

|Pξf |2 = |f |2 − 2|fξ|2 for |ξ| = 1. (3.50)

Substitute (3.49) and (3.50) into (3.48)

1

ω
B(f, f) = (n − 1)|f |2 − 2(n + 1)

ω

∫

Ω

|fξ|2 dω. (3.51)

On using the obvious relation

1

ω

∫

Ω

ξiξj dω =

{

0 for i 6= j,
1/n for i = j,

15



we find
1

ω

∫

Ω

|fξ|2 dω =
1

n
|f |2.

Inserting this value into (3.51), we see that

1

ω
B(f, f) =

n2 − 3n − 2

n
|f |2.

This implies the positiveness of B on skew-symmetric tensors for n ≥ 4.

4 Three-dimensional case

We will first show that both our problems, linear and nonlinear, possess some non-
uniqueness in the three-dimensional case.

Let (M, g) be a three-dimensional CNTM which is assumed to be oriented. Every tan-
gent space TxM is a three-dimensional oriented Euclidean space. So, the vector product

TxM × TxM → TxM, (v, w) 7→ v × w

is well defined. It is extended to the C-bilinear operation

T C

x M × T C

x M → T C

x M, (v, w) 7→ v × w

on complex vectors. For a complex vector field v ∈ C∞(τ 1
0 M), we denote by Lv ∈

C∞(τ 1
1 M) the operator of vector multiplication by v,

Lv(x)η = v(x) × η for η ∈ T C

x M.

Note that Lv is a skew-symmetric tensor field. Quite similarly, for a semibasic vector field
v ∈ C∞(β1

0M), the operator Lv ∈ C∞(β1
1M) is defined. Let us prove the formula

PξLv = πξLvπξ =
〈v, ξ〉
|ξ|2 Lξ. (4.1)

We remind that 〈·, ·〉 and | · | are defined in Section 2. This is a pure algebraic local
formula. So, we can use a positive orthonormal basis (e1, e2, e3 = ξ/|ξ|) in TxM . In such
a basis

πξ =





1 0 0
0 1 0
0 0 0



 , Lv =





0 −v3 v2

v3 0 −v1

−v2 v1 0



 , Lξ =





0 −|ξ| 0
|ξ| 0 0
0 0 0



 , 〈v, ξ〉 = v3|ξ|,

and the formula follows immediately.
Next, we prove the formula

h

∇Lξ = 0. (4.2)

The formula is quite expectable since
h

∇ξ = 0. Nevertheless, it needs a proof. Here, we

have to use a general coordinate system since
h

∇ is a differential operator. The vector
product is expressed by the formula

(v × w)i =
1√
g
(vi+1wi+2 − vi+2wi+1)
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in general coordinates, where g = det(gij) and indices are reduced modulo 3. Therefore

(Lv)i,i+1 = −√
gvi+2 (4.3)

and (4.2) is proved by straightforward calculations with making use of ∇igjk = 0 and
h

∇iξ
j = 0.
We derive from (4.1)–(4.2) and the formula H(1/|ξ|2) = 0 that

H(
λ

|ξ|2Lξ) =
Hλ

|ξ|2 Lξ = PξL∇λ

for a complex function λ ∈ C∞(M). Thus

H(
λ

|ξ|2Lξ) = PξL∇λ. (4.4)

This gives us the following non-uniqueness in the linear problem. If the function λ vanishes
on the boundary, λ|∂M = 0, then u(x, ξ) = λLξ/|ξ|2 solves the boundary value problem

Hu = Pξf, u∂−ΩM = 0 (4.5)

with f = L∇λ and satisfies
F [f ] = u|∂+ΩM = 0. (4.6)

The boundary value problem (4.5) coincides with (3.2) for the unit weights p = q = E,
and (4.6) means that f cannot be recovered from F [f ].

The same arguments give us some non-uniqueness in the nonlinear problem. Fix
a function λ ∈ C∞(M) vanishing on the boundary, λ|∂M = 0, and, for (x, ξ) ∈ ΩM ,
define the linear operator U(x, ξ) on T C

x M whose matrix in a positive orthonormal basis
(e1, e2, e3 = ξ) is





cos λ(x) − sin λ(x) 0
sin λ(x) cos λ(x) 0

0 0 1



 .

For a real function λ, U(x, ξ) is the rotation of TxM around the axis ξ by the angle λ(x).
In the case of a complex λ, the operator is also well defined although its geometric sense is
more complicated. The semibasic tensor field U ∈ C∞(β1

1M ; ΩM) satisfies the equation

HU = (PξL∇λ)U (4.7)

and boundary condition
U |∂ΩM = E. (4.8)

Indeed, (4.8) is obvious. Let us prove (4.7). In virtue of (4.1), equation (4.7) is equivalent
to the following one:

HU(x, ξ) = 〈∇λ(x), ξ〉LξU(x, ξ). (4.9)

Let γ be a unit speed geodesic. Setting x = γ(t), ξ = γ̇(t) in (4.9), we arrive to the
equation

DU(t)

dt
=

dλ(t)

dt
Lγ̇(t)U(t), (4.10)
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where λ(t) = λ(γ(t)) and U(t) = U(γ(t), γ̇(t)). Conversely, if (4.10) holds for any unit
speed geodesic γ, then (4.9) is true. To prove (4.10), we choose an orthonormal basis
(e1(t), e2(t), e3(t) = γ̇(t)) of Tγ(t)M which is parallel along γ. In such a basis, (4.10) is
equivalent to the matrix equation

d

dt





cos λ(t) − sin λ(t) 0
sin λ(t) cos λ(t) 0

0 0 1



 =
dλ

dt





0 −1 0
1 0 0
0 0 0









cos λ(t) − sin λ(t) 0
sin λ(t) cos λ(t) 0

0 0 1





which is obviously true.
Comparing (4.7)–(4.8) with (2.3)–(2.4), we see that a field f = L∇λ with λ|∂M = 0

cannot be recovered from data (2.3).
Let us introduce the definition: f ∈ C∞(τ 1

1 M) is said to be a potential field if it can
be represented as f = L∇λ for some function λ ∈ C∞(M) vanishing on the boundary,
λ|∂M = 0. Potential fields constitute the natural obstruction for the uniqueness in the
both, linear and nonlinear, problems. We are going to prove that a solution to the linear
problem is unique up to the obstruction. The corresponding local result for the nonlinear
problem will be obtained in the next section. First of all we prove

Lemma 4.1 (on decomposition). Let (M, g) be a compact oriented three-dimensional
Riemannian manifold with boundary. Every tensor field f ∈ C∞(τ 1

1 M) can be uniquely
represented as

f = L∇λ + f̃ (4.11)

with some λ ∈ C∞(M) satisfying
λ|∂M = 0 (4.12)

and some tensor field f̃ ∈ C∞(τ 1
1 M) satisfying the condition: the 2-form f̃ijdxi ∧ dxj is

closed,
d(f̃ijdxi ∧ dxj) = 0. (4.13)

The summands of decomposition (4.11) are called the potential and closed parts of f
respectively. Note that (4.13) involves only the skew-symmetric part of f̃ , i.e., a symmetric
tensor field is closed. Lemma 4.1 can be derived from the Hodge-Morrey decomposition
[8] but we give a shorter independent proof.

Proof of Lemma 4.1. We first prove the uniqueness statement. Assume (4.11)–
(4.13) to be valid. Applying the exterior derivative d to the form fijdxi ∧ dxj and using
(4.11) and (4.13), we obtain

d
(

(L∇λ)ijdxi ∧ dxj
)

= d(fijdxi ∧ dxj).

On using (4.3), one can check by a straightforward calculation in coordinates that

d
(

(L∇λ)ijdxi ∧ dxj
)

= −2∆λ
√

gdx1 ∧ dx2 ∧ dx3,

where ∆ is the Laplace-Beltrami operator. Thus, the function λ solves the Dirichlet
problem

∆λ = − 1√
g

(∂f−
23

∂x1
+

∂f−
31

∂x2
+

∂f−
12

∂x3

)

, λ|∂M = 0, (4.14)
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where f− is the skew-symmetric part of f , i.e., f−
ij = 1

2
(fij − fji). The solution to the

Dirichlet problem is unique.
The existence statement is proved by reverse arguments. Given f , let λ be the solution

to the Dirichlet problem (4.14) and f̃ = f − L∇λ. Then (4.11)–(4.13) holds. The lemma
is proved.

We restrict ourselves to considering the inverse problem for closed fields only.

Theorem 4.2 There exist such positive numbers δ and ε that, for any oriented 3-dimen-
sional CNTM (M, g) satisfying (3.7) and for any weights p, q ∈ C∞(β1

1M ; ΩM) satisfying
(3.1) and (3.5), every closed tensor field f ∈ C∞(τ 1

1 M) can be uniquely recovered from the
trace (3.4) of the solution to the boundary value problem (3.2) and the stability estimate

‖f‖2
L2 ≤ C

(

‖F [f ]‖2
H1 + ‖f |∂M‖L2 · ‖F [f ]‖L2

)

(4.15)

holds with a constant C independent of f .

Proof follows the same line as the proof of Theorem 3.1 with the following difference:
the left-hand side of the Pestov identity (3.12) will be estimated in a different way by
making use of the closeness of f .

We represent f as the sum of symmetric and skew-symmetric fields

f = f+ + f−, f+
ij = f+

ji , f−
ij = −f−

ji .

Taking the symmetry of Christoffel symbols into account, the closeness condition for f
can be written as

∇if
−
jk + ∇jf

−
ki + ∇kf

−
ij = 0. (4.16)

The vector f−ξ is orthogonal to ξ and therefore πξf
−ξ = f−ξ. Formulas (3.20) take now

the form

a =
1

|ξ|2πξf
+ξ +

1

|ξ|2f−ξ, b =
1

|ξ|2πξf̄
+ξ − 1

|ξ|2 f̄−ξ. (4.17)

We write equation (3.2) in the form (3.9) with the remainder r defined by (3.10). Then
we write the Pestov identity (3.12) for u with terms defined by (3.13)–(3.15). The left
hand-side of the identity can be written as in (3.16).

The main problem is estimating the first term 〈
h

∇u,
v

∇(Pξf)〉 on the right-hand side of
(3.16). To this end we represent f in form (3.17) with a and b defined by (4.17). Then
(3.23) holds. In view of (4.17), equation (3.23) can be written as

〈
h

∇u,
v

∇(Pξf)〉 = − 1

|ξ|2 〈
h

δ1u +
h

δ2u, πξf
+ξ〉 − 1

|ξ|2 〈
h

δ1u −
h

δ2u, f−ξ〉. (4.18)

We transform the second term on the right-hand side of (4.18) by distinguishing di-

vergent terms. Using definition (3.22) of
h

δ1u and
h

δ2u, we write

〈
h

δ1u −
h

δ2u, f−ξ〉 = (
h

∇pu
ip −

h

∇pu
pi)f̄−

ikξ
k =

=
h

∇p(ξ
kuipf̄−

ik + ξkupif̄−
ki) − ξkuip(

h

∇pf̄
−
ik +

h

∇if̄
−
kp).
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Now, we use the closeness condition (4.16) to transform this formula to the following one:

〈
h

δ1u −
h

δ2u, f−ξ〉 = ξkuip
h

∇kf̄
−
pi +

h

∇p(ξ
kuipf̄−

ik + ξkupif̄−
ki).

Finally, we distinguish a divergent term from the first summand on the right-hand side

〈
h

δ1u −
h

δ2u, f−ξ〉 =
h

∇k(ξ
kuipf̄−

pi) − ξk
h

∇ku
ip · f̄−

pi +
h

∇p(ξ
kuipf̄−

ik + ξkupif̄−
ki).

This can be written as

〈
h

δ1u −
h

δ2u, f−ξ〉 = 〈Hu, f−〉 +
h

∇i(ξ
iujkf̄−

kj + ξkujif̄−
jk + ξkuij f̄−

kj). (4.19)

Next, we calculate the first term on the right-hand side of (4.19) by making use of
(3.9) and (3.21)

〈Hu, f−〉 = (Hu)ij f̄−
ij = ((Pξf)ij + rij)f̄−

ij = (f ij − aiξj − b̄jξi − cξiξj + rij)f̄−
ij. (4.20)

Since f− is a skew-symmetric tensor, cξiξj f̄−
ij = 0. This means that the term cξiξj on

the right-hand side of (4.20) can be omitted. By the same reason, the term f ij can be
replaced with (f−)ij , the vector a = 1

|ξ|2
πξfξ can be replaced with 1

|ξ|2
fξ, and the vector

b can be replaced with 1
|ξ|2

f ∗ξ. In such the way, (4.20) takes the form

〈Hu, f−〉 = |f−|2 − 1

|ξ|2 (f ikξkξ
j + fkjξkξ

i)f̄−
ij + 〈r, f−〉.

The second term on the right-hand side is independent of f+, and the formula can be
written as

〈Hu, f−〉 = |f−|2 − 2

|ξ|2 |f
−ξ|2 + 〈r, f−〉. (4.21)

Substitute (4.21) into (4.19)

〈
h

δ1u −
h

δ2u, f−ξ〉 = |f−|2 − 2

|ξ|2 |f
−ξ|2 + 〈r, f−〉 +

h

∇i(ξ
iujkf̄−

kj + ξkujif̄−
jk + ξkuij f̄−

kj).

Inserting this expression into (4.18) and estimating the first term on the right-hand side
of (4.18) in a similar way as in deriving (3.24), we arrive to the inequality

2 Re〈
h

∇u,
v

∇(Pξf)〉 ≤ β

2
(|

h

δ1u|2 + |
h

δ2u|2) +
4

β|ξ|4 |πξf
+ξ|2−

− 2

|ξ|2 |f̄
−|2 +

4

|ξ|4 |f
−ξ|2 +

h

∇i(ṽ3)
i +

2

|ξ|2 |r| · |f |, (4.22)

where

(ṽ3)
i = − 2

|ξ|2 Re(ξiujkf̄−
kj + ξkujif̄−

jk + ξkuij f̄−
kj) (4.23)

and β is an arbitrary positive number. The last term on the right-hand side of (4.22) can
be estimated by Cε|f |2/|ξ|2 as follows from (3.5) and (3.10). Estimating the first term
on the right-hand side of (4.22) by (3.35), we obtain

2 Re〈
h

∇u,
v

∇(Pξf)〉 ≤ β|z|2+ 4

β|ξ|4 |πξf
+ξ|2− 2

|ξ|2 |f̄
−|2+ 4

|ξ|4 |f
−ξ|2+ Cε

|ξ|2 |f |
2+

h

∇iṽ
i+

β

2
R4[u]

(4.24)
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with the same curvature dependent term R4[u] as in (3.36) and

ṽ =
β

2
(ṽ1 + ṽ2) + ṽ3,

where ṽi (i = 1, 2, 3) are defined by (3.27), (3.30), and (4.23) respectively.
The second term on the right-hand side of (3.16) is estimated by (3.37) as before.

Combining (3.37) and (4.24), we obtain from (3.16)

2 Re〈
h

∇u,
v

∇Hu〉 ≤ β|z|2 +
4

β
|πξf

+ξ|2−2|f̄−|2 +4|f−ξ|2 +Cε(|f |2 + |
h

∇u|2)+
h

∇iṽ
i +

β

2
R4[u]

(4.25)
for |ξ| = 1.

We estimate the left-hand side of the Pestov identity (3.12) by (4.25) and write the
result in the form

(1−Cε)|
h

∇u|2+
v

∇iw
i−β|z|2− 4

β
|πξf

+ξ|2+2|f̄−|2−4|f−ξ|2−Cε|f |2 ≤
h

∇i(ṽ
i−vi)+

β

2
R4[u].

Integrating this inequality and transforming the integrals of divergent terms in the same
way as in (3.40), we obtain

∫

ΩM

[

(1 − Cε)|
h

∇u|2 + |Hu|2 − β|z|2 − 4

β
|πξf

+ξ|2 + 2|f̄−|2 − 4|f−ξ|2 − Cε|f |2
]

dΣ ≤

≤
∫

∂ΩM

〈ṽ − v, ν〉dΣ2n−2 +

∫

ΩM

R4[u]dΣ.

Substituting the value |
h

∇u|2 = |z|2 + |Hu|2 from (3.34), we write the result in the form

∫

ΩM

[

(1 − β − Cε)|z|2 + (2 − Cε)|Hu|2 − 4

β
|πξf

+ξ|2 + 2|f̄−|2 − 4|f−ξ|2 − Cε|f |2
]

dΣ ≤

≤
∫

∂ΩM

〈ṽ − v, ν〉dΣ2n−2 +

∫

ΩM

R4[u]dΣ. (4.26)

The curvature dependent integral on (4.26) is estimated as before in (3.42)

∣

∣

∣

∣

∣

∣

∫

ΩM

R1[u]dΣ

∣

∣

∣

∣

∣

∣

≤ Cδ

∫

ΩM

|
h

∇u|2dΣ, (4.27)

while the boundary integral is estimated in a little bit different way. Namely, instead of
(3.43), we have the estimate

∣

∣

∣

∣

∣

∣

∫

∂ΩM

〈ṽ − v, ν〉dΣ2n−2

∣

∣

∣

∣

∣

∣

≤ D
(

‖u|∂+ΩM‖2
H1 + ‖f |∂M‖L2 · ‖u|∂+ΩM‖L2

)

. (4.28)
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The second term on the right-hand side of (4.28) appears because of the dependence of
ṽ on f as is seen from (4.23). Inequality (4.28) is proved in the same way as estimate
(4.7.2) of [5].

Combining (4.26)–(4.28) and using again the equality |
h

∇u|2 = |z|2 + |Hu|2, we obtain

∫

ΩM

[

(1−β−Cδ−Cε)|z|2+(2−Cδ−Cε)|Hu|2− 4

β
|πξf

+ξ|2+2|f̄−|2−4|f−ξ|2−Cε|f |2
]

dΣ ≤

≤ D
(

‖u|∂+ΩM‖2
H1 + ‖f |∂M‖L2 · ‖u|∂+ΩM‖L2

)

. (4.29)

The tensors f+ and f− are orthogonal to each other as well as Pξf
+ and Pξf

− are
orthogonal to each other. Therefore

|f |2 = |f+|2 + |f−|2, |Pξf |2 = |Pξf
+|2 + |Pξf

−|2.

With the help of these equalities, (3.45) gives

|Hu|2 ≥ |Pξf
+|2 − Cε|f+|2 − Cε|f−|2. (4.30)

We use (4.30) to transform the estimate (4.29) to the final form

(1 − β − Cδ − Cε)

∫

ΩM

|z|2dΣ +

∫

ΩM

[

(2 − Cδ − Cε)|Pξf
+|2 − 4

β
|πξf

+ξ|2 − Cε|f+|2
]

dΣ+

+2

∫

ΩM

(|f̄−|2 − 2|f−ξ|2 −Cε|f−|2)dΣ ≤ D
(

‖u|∂+ΩM‖2
H1 + ‖f |∂M‖L2 · ‖u|∂+ΩM‖L2

)

(4.31)

with some new constant C.
For β = 1 and ε = δ = 0, the left-hand side of (4.31) is the integral over M of the

Hermitian form
A(f, f) = B(f+, f+) + 2Q(f−, f−),

where B is the same as in Lemma 3.2 and

Q(f, f) =

∫

ΩxM

(|f |2 − 2|fξ|2)dωx(ξ). (4.32)

By Lemma 3.2, the form B is positively definite on symmetric tensors in the 3-dimensional
case. The form Q is positively definite on skew-symmetric tensors. Indeed, repeating the
arguments of the proof of Lemma 3.2, we derive in the 3-dimensional case

1

ω

∫

ΩxM

(|f |2 − 2|fξ|2)dωx(ξ) =
1

3
|f |2

for a skew-symmetric tensor f . Now, the proof is finished in the same way as in Theorem
3.1.

22



5 Nonlinear problem

We return to considering the inverse problem of recovering a tensor field f ∈ C∞(τ 1
1 M)

on a CNTM (M, g) from the data

Φ[f ] = U |∂+ΩM , (5.1)

where U ∈ C(β1
1M ; ΩM) is the solution to the boundary value problem on ΩM

HU = (Pξf)U, U |∂−ΩM = E. (5.2)

We will prove the uniqueness under the following smallness assumptions on f :

|f(x)| < ε for x ∈ ∂M, (5.3)

0
∫

τ−(x,ξ)

|f(γx,ξ(t))|dt < ε,

0
∫

τ−(x,ξ)

|∇f(γx,ξ(t))|dt < ε for (x, ξ) ∈ ∂+ΩM. (5.4)

We remind that we use notations introduced in Section 2. In particular, ∇ is the covariant
derivative. Note that these smallness conditions are quite similar to that of Theorem 2 of
[9].

Theorem 5.1 It is possible to choose a positive number δ = δ(n) for n ≥ 4 such that,
for an n-dimensional CNTM (M, g) satisfying the curvature condition (3.7), there exists
a positive number ε = ε(M, g) such that the following statement is true. Let two tensor
fields fi ∈ C∞(τ 1

1 M) (i = 1, 2) satisfy (5.3)–(5.4) and Φi = Φ[fi] be the corresponding
data. Then the estimate

‖f2 − f1‖L2 ≤ C‖Φ−1
1 Φ2 − E‖H1 (5.5)

holds with a constant C independent of fi. In particular, f1 = f2 if Φ1 = Φ2. In the case
of n = 3, the same statement is true under the additional assumption that f2 − f1 is a
closed tensor field.

Proof. Let Ui ∈ C(β1
1M ; ΩM) (i = 1, 2) be the solution to the boundary value

problem
HUi = (Pξfi)Ui, Ui|∂−ΩM = E. (5.6)

According to (5.2), the solution satisfies

Uiξ = U∗
i ξ = ξ. (5.7)

Set u = U−1
1 U2 − E. Using the equalities HE = 0, H(U−1

1 U2) = HU−1
1 · U2 + U−1

1 HU2,
and HU−1

1 = −U−1
1 HU1 · U−1

1 , one easily derive from (5.6) that u solves the boundary
value problem

Hu = U−1
1

(

Pξ(f2 − f1)
)

U2, u|∂−ΩM = 0 (5.8)

and
u|∂+ΩM = Φ−1

1 Φ2 − E. (5.9)
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Setting f = f2 − f1, p = U−1
1 , q = U2, we write (5.8)–(5.9) in the form

Hu = p(Pξf)q, u|∂−ΩM = 0, (5.10)

F [f ] = u|∂+ΩM = Φ−1
1 Φ2 − E. (5.11)

We have arrived to the linear problem considered in Sections 3 and 4. If we will prove
that the weights p = U−1

1 and q = U2 satisfy conditions (3.1) and (3.5), we would be able
to apply Theorems 3.1 and 4.2 to obtain the statement of Theorem 5.1. Condition (3.1)
is satisfied by (5.7). The weight p = U−1

1 solves the boundary value problem

Hp = −p(Pξf1), p|∂−ΩM = E

which is very similar to (5.2). Theorem 5.1 is thus reduced to the following

Lemma 5.2 Let (M, g) be a CNTM and a tensor field f ∈ C∞(τ 1
1 M) satisfy (5.3)–(5.4).

Then the solution U to the boundary value problem (5.2) satisfies the estimates

|U − E| < Cε, |
v

∇U | < Cε on ΩM (5.12)

with some constant C depending on (M, g) but not on f .

To prove Lemma 5.2, we need the following estimate for solutions to linear ordinary
differential equations (see Lemma 4.1 of Chapter IV of [1]):

Lemma 5.3 Let y = (y1(t), . . . , yN(t)) be the solution to the initial value problem

dy

dt
= A(t)y + f(t), y(0) = y0,

where f(t) is an N-dimensional vector and A(t) is an N × N-matrix. Then

|y(t)| ≤
(

|y0| +
t

∫

0

|f(τ)|dτ
)

exp

t
∫

0

|A(τ)|dτ,

where |A(τ)| is the operator norm of the matrix A(τ) defined with the help of the standard
norm | · | on CN .

Let us adjust this statement to our geometric setting.

Lemma 5.4 Let (M, g) be a CNTM and f ∈ C∞(β0
mM ; ΩM), A ∈ C∞(βm

mM ; ΩM) be
two semibasic tensor fields. Let y ∈ C(β0

mM ; ΩM) be the solution to the boundary value
problem

Hy = Ay + f, y|∂−ΩM = y0

with some y0 ∈ C(β0
mM ; ∂−ΩM). Then

|y(x, ξ)| ≤ C
(

|y0(γ(τ−(x, ξ)), γ̇(τ−(x, ξ)))| +
0

∫

τ−(x,ξ)

|f(γ(t), γ̇(t))|dt
)

×

× exp
[

C

0
∫

τ−(x,ξ)

|A(γ(t), γ̇(t))|dt
]

for (x, ξ) ∈ ΩM , where γ = γx,ξ. Here the norm | · | is defined in Section 2, and the
constant C depends on m and (M, g).
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The constant C appears in Lemma 5.4 since different norms are used in this Lemma
and Lemma 5.3. In what follows in this section, we denote different constants depending
on (M, g) by the same letter C.

Proof of Lemma 5.2. Let U be the solution to (5.2). Then U − E solves the
boundary value problem

H(U − E) = (Pξf)(U − E) + Pξf, (U − E)|∂−ΩM = 0.

Applying Lemma 5.4, we obtain the estimate

|(U − E)(x, ξ)| ≤ C

0
∫

τ−(x,ξ)

|Pγ̇(t)f(γ(t))|dt exp
[

C

0
∫

τ−(x,ξ)

|Pγ̇(t)f(γ(t))|dt
]

≤

≤ C

0
∫

τ−(x,ξ)

|f(γ(t))|dt exp
[

C

0
∫

τ−(x,ξ)

|f(γ(t))|dt
]

,

Together with (5.4), this implies the first of inequalities (5.12).

The proof of the second of estimates (5.12) is more troublesome because
v

∇U and
h

∇U

must be estimated together but
h

∇U is unbounded near Ω(∂M).

We start with estimating
h

∇U on ∂−ΩM . To this end we consider equation (5.2) at
a boundary point (x, ξ) ∈ ∂−ΩM . Because of the boundary condition U |∂−ΩM = E,
equation (5.2) gives

(HU)|∂−ΩM = Pξf. (5.13)

Let us choose boundary normal coordinates (x1, . . . , xn) in a neighborhood V of the
boundary point such that the boundary is determined by the equation xn = 0, xn ≥ 0 in
V , and gin = δin. Because of the boundary condition U i

j |xn=0 = δi
j, the equalities

h

∇αU i
j |xn=0 = 0 (0 ≤ α ≤ n − 1)

hold, and equation (5.13) becomes

(ξn

h

∇nU
i
j)|xn=0 = (Pξf)i

j .

Since ξn = −〈ξ, ν〉, where ν = ν(x) is the unit outward normal to the boundary, this gives
with the help of (5.3)

|
h

∇U(x, ξ)| ≤ Cε

|〈ξ, ν〉| for (x, ξ) ∈ ∂−ΩM, 〈ν, ξ〉 6= 0. (5.14)

v

∇U vanishes on ∂−ΩM as follows from the condition U |∂−ΩM = E,

v

∇U |∂−ΩM = 0. (5.15)

Applying the operators
v

∇ and
h

∇ to equation (5.2), we obtain

v

∇HU = (Pξf)
v

∇U + (
v

∇Pξ)fU,
h

∇HU = (Pξf)
h

∇U + (Pξ∇f)U. (5.16)

25



We have used that
v

∇f = 0 and
h

∇f = ∇f since f is independent of ξ.

Operators
v

∇ and H satisfy the commutator formula

v

∇H = H
v

∇ +
h

∇ (5.17)

as follows immediately from the definition H = ξi
h

∇i and from the fact that
v

∇ and
h

∇
commute. The commutator formula for

h

∇ and H is a little bit more complicated. Indeed,
using the commutator formula for horizontal derivatives (Theorem 3.5.2 of [5]), we see
that

h

∇i(HU)j
k =

h

∇i(ξ
p

h

∇pU
j
k) = ξp

h

∇i

h

∇pU
j
k =

= ξp
h

∇p

h

∇iU
j
k + ξp

(

− Rl
qipξ

q
v

∇lU
j
k + Rj

lipU
l
k − Rl

kipU
j
l

)

.

This can be written as
h

∇HU = H
h

∇U + R1[
v

∇U ] + R2[U ] (5.18)

with some algebraic operators R1 and R2 on semibasic tensors which are determined by
the curvature tensor. The operator R2 satisfies R2[E] = 0. Therefore the first of estimates
(5.12), which is already proved, implies the inequality

|R2[U ]| = |R2[U − E]| ≤ Cε (5.19)

with some constant C depending on the curvature bound.
Using commutator formulas (5.17) and (5.18), we write (5.16) as

H(
v

∇U) = (Pξf)
v

∇U −
h

∇U + F, (5.20)

H(
h

∇U) = −R1[
v

∇U ] + (Pξf)
h

∇U + G, (5.21)

where
F = (

v

∇Pξ)fU, G = (Pξ∇f)U −R2[U ]. (5.22)

We first consider (5.20)–(5.21) as a linear system of ordinary differential equations in

coordinates of
v

∇U and
h

∇U with free terms F and G. Applying Lemma 5.4 to the system,
we obtain the estimate

|
h

∇U(x, ξ)| ≤ C
{

|
v

∇U(γ(τ−(x, ξ)), γ̇(τ−(x, ξ)))| + |
h

∇U(γ(τ−(x, ξ)), γ̇(τ−(x, ξ)))|+

+

0
∫

τ−(x,ξ)

(|F (γ(t), γ̇(t))|+|G(γ(t), γ̇(t))|)dt
}

exp
[

C

0
∫

τ−(x,ξ)

(|R1((γ(t), γ̇(t))|+|Pγ̇(t)f(γ(t))|+|E|)dt
]

.

(5.23)
The first summand of the expression in braces is equal to zero by (5.15). In virtue of
(5.14), the second summand of this expression is estimated as

|
h

∇U(γ(τ−(x, ξ)), γ̇(τ−(x, ξ)))| ≤ Cε

|〈γ̇(τ−(x, ξ)), ν(γ(τ−(x, ξ))〉| .
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By Lemma 4.1.2 of [5], the estimate

|τ−(x, ξ)|
|〈γ̇(τ−(x, ξ)), ν(γ(τ−(x, ξ)))〉| ≤ C

holds. Combining two last estimates, we obtain

|
h

∇U(γ(τ−(x, ξ)), γ̇(τ−(x, ξ)))| ≤ Cε

|τ−(x, ξ)| .

As is seen from (5.22), (5.19), and (5.4), the integral inside the braces in (5.23) can be
estimated by Cε. Finally, the integral under the exponent on (5.23) is estimated by some
constant. Therefore (5.23) implies the estimate

|
h

∇U(x, ξ)| ≤ Cε

|τ−(x, ξ)| for (x, ξ) ∈ ΩM. (5.24)

Now, we consider (5.20) as a linear system of ordinary differential equations in coordi-

nates of
v

∇U with the free term −
h

∇U + F . Applying Lemma 5.4 to the system and using
the homogeneous initial condition (5.15), we obtain the estimate

|
v

∇U(x, ξ)| ≤ C

0
∫

τ−(x,ξ)

(

|
h

∇U(γ(t), γ̇(t))| + |F (γ(t), γ̇(t))|
)

dt exp
[

C

0
∫

τ−(x,ξ)

|Pγ̇(t)f(γ(t))|dt
]

.

(5.25)
In virtue of (5.24), the first integral on the right-hand side of (5.25) can be estimated by
Cε. Estimating then the second integral by (5.4), we obtain the second of inequalities
(5.12). The lemma is proved.

6 Kernel of the operator S

In this section, we restrict ourselves to considering symmetric matrix functions on the
whole of R

3 endowed with the standard scalar product 〈·, ·〉.
Let M(3) be the space of complex-valued symmetric 3 × 3-matrices. Such a matrix

f ∈ M(3) is considered as the linear operator f : C3 → C3. By S2 we denote the unit
sphere in R3 and by TS2 = {(x, ξ) | ξ ∈ S2, x ∈ R3, 〈x, ξ〉 = 0}, the tangent bundle of
the sphere. Given ξ ∈ S2, let ξ⊥ = {η ∈ C3 | 〈η, ξ〉 = 0} be the complex two-dimensional
space of vectors orthogonal to ξ and πξ : C3 → C3, the orthogonal projection onto ξ⊥.

Let S(R3; M(3)) be the Schwartz space of M(3)-valued functions on R3. The linear
operator

S : S(R3; M(3)) → C∞(TS
2)

is defined by

S[f ](x, ξ) =

∞
∫

−∞

tr (πξf(x + tξ)πξ)dt for (x, ξ) ∈ TS
2, (6.1)

compare with (1.10). We are going to answer the question: to which extent is a symmetric
matrix function f ∈ S(R3; M(3)) determined by the data S[f ]? Since S[f ] depends
linearly on f , the question is equivalent to studying the kernel of the operator S.
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Let us recall the definition of the ray transform

I : S(R3; M(3)) → C∞(TS
2),

I[f ](x, ξ) =

∞
∫

−∞

〈f(x + tξ)ξ, ξ〉dt =

∞
∫

−∞

fij(x + tξ)ξiξj dt for (x, ξ) ∈ TS
2. (6.2)

See Chapter 2 of [5] for the theory of the ray transform on the Euclidean space. Our
approach to studying the kernel of S is based on the following observation: S[f ] = −I[f ]
for a symmetric matrix function f with zero trace, see equation (6.7) below.

Theorem 6.1 A symmetric matrix function f = (fij(x)) ∈ S(R3; M(3)) belongs to the
kernel of the operator S if and only if it satisfies the system of partial differential equations

R1[f ] := f11;11 + 2f12;12 + f22;22 + f33;11 + f33;22 = 0

R2[f ] := f11;11 + 2f13;13 + f22;11 + f22;33 + f33;33 = 0

R3[f ] := f11;22 + f11;33 + 2f23;23 + f22;22 + f33;33 = 0















(6.3)

where the tensor notations for partial derivatives fij;kl = ∂2fij/∂xk∂xl are used for brevity.

The theorem gives the full system {Ri[f ] | i = 1, 2, 3} of local linear functionals that
can be recovered from the data S[f ].

Proof. Represent the matrix f as

f = f̃ + λE, tr f̃ = 0, (6.4)

where E is the unit matrix and λ ∈ S(R3) is a scalar function. Then

S[f ] = S[f̃ ] + S[λE]. (6.5)

As follows from definition (6.1) of the operator S,

S[λE] = 2I[λE], (6.6)

where

I[λE](x, ξ) =

∞
∫

−∞

λ(x + tξ)dt for (x, ξ) ∈ TS
2

is the ray transform of the matrix function λE.
If (ξ, η, ζ) is an orthonormal basis of R3, then

0 = tr f̃ = 〈f̃(x)ξ, ξ〉 + 〈f̃(x)η, η〉 + 〈f̃(x)ζ, ζ〉

and
tr (πξf̃(x)πξ) = 〈f̃(x)η, η〉 + 〈f̃(x)ζ, ζ〉.

This implies
tr (πξf̃(x + tξ)πξ) = −〈f̃(x + tξ)ξ, ξ〉.
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Integrating the last equality with respect to t and recalling definitions (6.1) and (6.2) of
S and I, we see that

S[f̃ ] = −I[f̃ ]. (6.7)

Substituting (6.6)–(6.7) into (6.5), we obtain

S[f ] = −I[f̃ − 2λE].

Thus, f is in the kernel of S if and only if

I[f̃ − 2λE] = 0. (6.8)

Now, we apply Theorem 2.2.1 of [5] which states that (6.8) is equivalent to the existence
of a vector field v such that

f̃ − 2λE = dv, (6.9)

where

d : C∞(R3; R3) → C∞(R3; M(3)), (dv)ij =
1

2

( ∂vi

∂xj

+
∂vj

∂xi

)

is the inner derivative. Theorem 2.2.1 of [5] is formulated and proved for compactly
supported tensor fields. Nevertheless, the same proof works for f̃ − 2λE ∈ S(R3; M(3))
and gives the vector field v belonging to the Schwartz space S(R3; R3).

Let us express λ and f̃ through f . Applying the trace operator to the first of equations
(6.4) and taking the second one into account, we see that

λ =
1

3
tr f. (6.10)

From (6.4) and (6.10),

f̃ij = fij −
1

3
tr f · δij . (6.11)

Substitute (6.10)–(6.11) into (6.9) to obtain

dv = f − tr f · E. (6.12)

Equation (6.12) represents the overdetermined system of six first order partial differ-
ential equations in three unknowns (v1, v2, v3). The solvability condition for the system
is presented by Theorem 2.2.2 of [5]: equation (6.12) is solvable if and only if the right-
hand side of (6.12) belongs to the kernel of the Saint-Venant operator. Here, we prefer to
use the version R of the Saint-Venant operator which is defined by the equation before
formula (2.4.6) of [5]. So, the solvability condition for (6.12) is

Rh = 0, where h = f − tr f · E. (6.13)

The operator R is defined by the formula

4(Rh)ijkl = hik;jl − hjk;il − hil;jk + hjl;ik.

It possesses the following symmetries:

(Rh)ijkl = −(Rh)jikl = −(Rh)ijlk = (Rh)klij.
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Because of the symmetries, the tensor Rh has six linearly independent components, and
equation (6.13) is equivalent to the system

−R1[f ] := (Rh)1212 = h11;22 − 2h12;12 + h22;11 = 0,

−R2[f ] := (Rh)1313 = h11;33 − 2h13;13 + h33;11 = 0,

−R3[f ] := (Rh)2323 = h22;33 − 2h23;23 + h33;22 = 0,

−R4[f ] := (Rh)1213 = h11;23 − h12;13 − h13;12 + h23;11 = 0,

−R5[f ] := (Rh)2123 = h22;13 − h12;23 − h23;12 + h13;22 = 0,

−R6[f ] := (Rh)1323 = h33;12 − h13;23 − h23;13 + h12;33 = 0.

Substitute the value hij = fij − (f11 + f22 + f33)δij into the last system

R1[f ] := f11;11 + 2f12;12 + f22;22 + f33;11 + f33;22 = 0,

R2[f ] := f11;11 + 2f13;13 + f22;11 + f22;33 + f33;33 = 0,

R3[f ] := f11;22 + f11;33 + 2f23;23 + f22;22 + f33;33 = 0,

R4[f ] := f12;13 + f13;12 + f22;23 − f23;11 + f33;23 = 0,

R5[f ] := f11;13 + f12;23 − f13;22 + f23;12 + f33;13 = 0,

R6[f ] := f11;12 − f12;33 + f13;23 + f22;12 + f23;13 = 0.















































(6.14)

For a symmetric matrix function f = (fij(x)) ∈ S(R3; M(3)), system (6.14) contains
only three independent equations. More precisely: each of the last three equations of
(6.14) can be obtained from the first three equations by taking linear combinations, dif-
ferentiation, and integration. To prove this, let us rewrite system (6.14) in terms of the
Fourier transform g(ξ) = f̂ . Applying the Fourier transform to each equation of (6.14),
we arrive to the system

R̂1[g] := ξ2
1g11 + 2ξ1ξ2g12 + ξ2

2g22 + (ξ2
1 + ξ2

2)g33 = 0,

R̂2[g] := ξ2
1g11 + 2ξ1ξ3g13 + (ξ2

1 + ξ2
3)g22 + ξ2

3g33 = 0,

R̂3[g] := (ξ2
2 + ξ2

3)g11 + ξ2
2g22 + 2ξ2ξ3g23 + ξ2

3g33 = 0,

R̂4[g] := ξ1ξ3g12 + ξ1ξ2g13 + ξ2ξ3g22 − ξ2
1g23 + ξ2ξ3g33 = 0,

R̂5[g] := ξ1ξ3g11 + ξ2ξ3g12 − ξ2
2g13 + ξ1ξ2g23 + ξ1ξ3g33 = 0,

R̂6[g] := ξ1ξ2g11 − ξ2
3g12 + ξ2ξ3g13 + ξ1ξ2g22 + ξ1ξ3g23 = 0.



















































(6.15)

One can easily see the following three relations between equations of system (6.15):

2ξ2ξ3R̂4[g] = ξ2
3R̂1[g] + ξ2

2R̂2[g] − ξ2
1R̂3[g],

2ξ1ξ3R̂5[g] = ξ2
3R̂1[g] − ξ2

2R̂2[g] + ξ2
1R̂3[g],

2ξ1ξ2R̂5[g] = −ξ2
3R̂1[g] + ξ2

2R̂2[g] + ξ2
1R̂3[g].

Therefore three last equations of (6.15) follow from three first equations at least if g(ξ)
depends continuously on ξ.
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Deleting three last equations from system (6.15), we obtain the equivalent system

R̂1[g] := ξ2
1g11 + 2ξ1ξ2g12 + ξ2

2g22 + (ξ2
1 + ξ2

2)g33 = 0,

R̂2[g] := ξ2
1g11 + 2ξ1ξ3g13 + (ξ2

1 + ξ2
3)g22 + ξ2

3g33 = 0,

R̂3[g] := (ξ2
2 + ξ2

3)g11 + ξ2
2g22 + 2ξ2ξ3g23 + ξ2

3g33 = 0.















(6.16)

The same is true for system (6.14): deleting three last equations from (6.14), we will
obtain the equivalent system (6.3). The theorem is proved.

System (6.16) enables us to answer the question: which integral moments of f can be
determined from S[f ]? Indeed, the Tailor series of the function g(ξ) = f̂ is

gjk(ξ) ∼
∞

∑

m=0

∑

|α|=m

im

α!
µ

(m)
jk,α[f ]ξα, (6.17)

where

µ
(m)
jk,α[f ] =

∫

R3

xαfjk(x)dx |α| = m

are the integral moments of order m. Assuming f to be in the kernel of S, let us insert
series (6.17) into system (6.16). Since the coefficients of (6.16) are homogeneous functions
of ξ, the system does not mix moments of different orders. This means that we can take
g(ξ) in the form

gjk(ξ) =
∑

|α|=m

im

α!
µ

(m)
jk,α[f ]ξα

if we are looking for moments of order m.
Let us start with considering zero order moments. We substitute the expressions

gij = µ
(0)
ij into (6.16). Equating coefficients at the same degrees of ξ at the resulting

equations, we easily find that µ
(0)
ij = 0 for every (i, j). This means that the integral

∫

R3 f(x)dx can be determined from the data S[f ].
Next, we consider first order moments. We substitute the expressions

gij(ξ) = µ
(1)
ij,1ξ1 + µ

(1)
ij,2ξ2 + µ

(1)
ij,3ξ3

into system (6.16). Equating coefficients at the same degrees of ξ at the resulting equa-
tions, we arrive to the system

µ
(1)
11,1 + µ

(1)
22,1 = 0, µ

(1)
11,1 + µ

(1)
33,1 = 0, µ

(1)
11,2 + µ

(1)
22,2 = 0,

µ
(1)
22,2 + µ

(1)
33,2 = 0, µ

(1)
11,3 + µ

(1)
33,3 = 0, µ

(1)
22,3 + µ

(1)
33,3 = 0,

µ
(1)
11,2 + 2µ

(1)
12,1 + µ

(1)
33,2 = 0, µ

(1)
11,3 + 2µ

(1)
13,1 + µ

(1)
22,3 = 0, µ

(1)
11,3 + µ

(1)
22,3 + 2µ

(1)
23,2 = 0,

2µ
(1)
12,2 + µ

(1)
22,1 + µ

(1)
33,1 = 0, 2µ

(1)
13,3 + µ

(1)
22,1 + µ

(1)
33,1 = 0, µ

(1)
11,2 + 2µ

(1)
23,3 + µ

(1)
33,2 = 0.

The general solution to the system looks as follows:

µ
(1)
11,1 = a1, µ

(1)
12,1 = a2, µ

(1)
13,1 = a3, µ

(1)
22,1 = −a1, µ

(1)
23,1 = 0, µ

(1)
33,1 = −a1,
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µ
(1)
11,2 = −a2, µ

(1)
12,2 = a1, µ

(1)
13,2 = 0, µ

(1)
22,2 = a2, µ

(1)
23,2 = a3, µ

(1)
33,2 = −a2,

µ
(1)
11,3 = −a3, µ

(1)
12,3 = 0, µ

(1)
13,3 = a1, µ

(1)
22,3 = −a3, µ

(1)
23,3 = a2, µ

(1)
33,3 = a3,

where (a1, a2, a3) are arbitrary constants. Eliminating the constants, we obtain the fol-
lowing independent system of 15 linear combinations of first order moments of f which
can be recovered from the data S[f ]:

(µ
(1)
ij,k + δijµ

(1)
kk,k − δikµ

(1)
jj,j − δjkµ

(1)
ii,i)[f ], (6.18)

where δij is the Kronecker tensor. System (6.18) is considered for such (i, j, k) that at
least two of these indices are different. A similar consideration is possible for integral
moments µ

(m)
jk,α[f ] of an arbitrary order m.
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