262 research outputs found

    Impact of COVID-19 on maxillofacial surgery practice: a worldwide survey

    Get PDF
    The outbreak of coronavirus disease 2019 (COVID-19) is rapidly changing our habits. To date, April 12, 2020, the virus has reached 209 nations, affecting 1.8 million people and causing more than 110,000 deaths. Maxillofacial surgery represents an example of a specialty that has had to adapt to this outbreak, because of the subspecialties of oncology and traumatology. The aim of this study was to examine the effect of this outbreak on the specialty of maxillofacial surgery and how the current situation is being managed on a worldwide scale. To achieve this goal, the authors developed an anonymous questionnaire which was posted on the internet and also sent to maxillofacial surgeons around the globe using membership lists from various subspecialty associations. The questionnaire asked for information about the COVID-19 situation in the respondent's country and in their workplace, and what changes they were facing in their practices in light of the outbreak. The objective was not only to collect and analyse data, but also to highlight what the specialty is facing and how it is handling the situation, in the hope that this information will be useful as a reference in the future, not only for this specialty, but also for others, should COVID-19 or a similar global threat arise again

    Lampedusa in Berlin : (Im)Mobilität innerhalb des europäischen Grenzregimes

    Get PDF
    This paper analyses the mobility practices offorced migrants within the European border regime. It investigates the relation between the control and management mechanisms of migration and the attempts of forced migrants to move freely, crisscrossing territorial and juridical borders in Europe. The paper focuses on the experiences of a group of forced migrants, who, after escaping the war in Libya, obtained humanitarian protection in Italy, but because of the current precarious socio-economic conditions in Southern Europe, decided to leave for North European countries. A group settled in Berlin, which gave rise to a protest claiming the right to stay and work against what is foreseen by European Union law. This paper draws on ethnographic work to show the tension between individual desires and practices of free mobility and the structural and juridical constraints implemented by institutions in order to control it and contain it. Focusing on this (im)mobility highlights the internal borders of Europe and how they are continuously challenged by migrant subjects. Three different kinds of mobility emerge across the European space: mobility within national territory, infra-national mobility, and \u201ccommuting-mobility\u201d. In this way, migrant subjects create new geographies and experience the whole European territory as one place: living in Berlin, renewing documents in Milan, attending education courses in Turin, and working seasonally in Sicily or Apulia. Such mobilities are supported by networks of migrants, who continuously move, and their supporters. This suggests a process of \u201cEuropeanisation from below\u201d that continuously challenges EU internal borders

    effect of porosity and cell topology on elastic plastic behavior of cellular structures

    Get PDF
    Abstract In this work we study the mechanical behavior of Ti6Al4V cellular structures by varying the randomness in the cell topology from regular cubic to completely random and the porosity of the structure. The porosity of the structure is altered by changing the strut thickness and the pore size to obtain a stiffness value between 0.5-12Gpa. The geometrical deviation in the structures from the as-designed values is studied by morphological characterization. The samples are subjected to compression and tensile loading to obtain the stiffness and the elastic-plastic behavior of the samples. Finite element modelling (FEM) is carried out on the as-designed structures for both tensile and compressive loading to study the effect of deviation between the as-designed and as-built structures. FEM is also carried out for as-built regular structures, by introducing the geometrical deviation to match the porosity of the as-built structures. Comparison of FEM and experimental results indicated that the effect of cell topology depends on the porosity values. Simulation results of as-built structures demonstrated the importance of defects in the structure

    Mass media destabilizes the cultural homogeneous regime in Axelrod's model

    Full text link
    An important feature of Axelrod's model for culture dissemination or social influence is the emergence of many multicultural absorbing states, despite the fact that the local rules that specify the agents interactions are explicitly designed to decrease the cultural differences between agents. Here we re-examine the problem of introducing an external, global interaction -- the mass media -- in the rules of Axelrod's model: in addition to their nearest-neighbors, each agent has a certain probability pp to interact with a virtual neighbor whose cultural features are fixed from the outset. Most surprisingly, this apparently homogenizing effect actually increases the cultural diversity of the population. We show that, contrary to previous claims in the literature, even a vanishingly small value of pp is sufficient to destabilize the homogeneous regime for very large lattice sizes

    Complementarity and diversity in a soluble model ecosystem

    Full text link
    Complementarity among species with different traits is one of the basic processes affecting biodiversity, defined as the number of species in the ecosystem. We present here a soluble model ecosystem in which the species are characterized by binary traits and their pairwise interactions follow a complementarity principle. Manipulation of the species composition, and so the study of its effects on the species diversity is achieved through the introduction of a bias parameter favoring one of the traits. Using statistical mechanics tools we find explicit expressions for the allowed values of the equilibrium species concentrations in terms of the control parameters of the model

    Tensile and compression properties of variously arranged porous Ti-6Al-4V additively manufactured structures via SLM

    Get PDF
    Abstract Additively manufactured porous structures find increasing applications in the biomedical context to produce orthopedic prosthesis and devices. In comparison with traditional bulk metallic implants, they permit to tailor the stiffness of the prosthesis to that of the surrounding bony tissues, thus limiting the onset of stress shielding and resulting implant loosening, and to favor the bone in-growth through the interconnected pores. Mechanical and biological properties of these structures are strongly influenced by the size and spatial arrangement of pores and struts. In the present work irregular and regular cellular as well as fully random porous structures are investigated through tensile and compression uniaxial tests. Specific point of novelty of this work is that, beside classical compressive tests, which are standard characterization methods for porous/ cellular materials, tensile tests are carried out. Mechanical tests are complemented with morphological analysis and porosity measurements. An attempt is made to find correlations between cell arrangements, porosity and mechanical properties

    Statistical mechanics of the multi-constraint continuous knapsack problem

    Full text link
    We apply the replica analysis established by Gardner to the multi-constraint continuous knapsack problem,which is one of the linear programming problems and a most fundamental problem in the field of operations research (OR). For a large problem size, we analyse the space of solution and its volume, and estimate the optimal number of items to go into the knapsack as a function of the number of constraints. We study the stability of the replica symmetric (RS) solution and find that the RS calculation cannot estimate the optimal number of items in knapsack correctly if many constraints are required.In order to obtain a consistent solution in the RS region,we try the zero entropy approximation for this continuous solution space and get a stable solution within the RS ansatz.On the other hand, in replica symmetry breaking (RSB) region, the one step RSB solution is found by Parisi's scheme. It turns out that this problem is closely related to the problem of optimal storage capacity and of generalization by maximum stability rule of a spherical perceptron.Comment: Latex 13 pages using IOP style file, 5 figure

    Revisiting the nonequilibrium phase transition of the triplet-creation model

    Full text link
    The nonequilibrium phase transition in the triplet-creation model is investigated using critical spreading and the conservative diffusive contact process. The results support the claim that at high enough diffusion the phase transition becomes discontinuous. As the diffusion probability increases the critical exponents change continuously from the ordinary directed percolation (DP) class to the compact directed percolation (CDP). The fractal dimension of the critical cluster, however, switches abruptly between those two universality classes. Strong crossover effects in both methods make it difficult, if not impossible, to establish the exact location of the tricritical point.Comment: 7 pages, 12 figure

    Error threshold in finite populations

    Full text link
    A simple analytical framework to study the molecular quasispecies evolution of finite populations is proposed, in which the population is assumed to be a random combination of the constiyuent molecules in each generation,i.e., linkage disequilibrium at the population level is neglected. In particular, for the single-sharp-peak replication landscape we investigate the dependence of the error threshold on the population size and find that the replication accuracy at threshold increases linearly with the reciprocal of the population size for sufficiently large populations. Furthermore, in the deterministic limit our formulation yields the exact steady-state of the quasispecies model, indicating then the population composition is a random combination of the molecules.Comment: 14 pages and 4 figure

    Fractal geometry of spin-glass models

    Full text link
    Stability and diversity are two key properties that living entities share with spin glasses, where they are manifested through the breaking of the phase space into many valleys or local minima connected by saddle points. The topology of the phase space can be conveniently condensed into a tree structure, akin to the biological phylogenetic trees, whose tips are the local minima and internal nodes are the lowest-energy saddles connecting those minima. For the infinite-range Ising spin glass with p-spin interactions, we show that the average size-frequency distribution of saddles obeys a power law ∼w−D \sim w^{-D}, where w=w(s) is the number of minima that can be connected through saddle s, and D is the fractal dimension of the phase space
    • …
    corecore