2,627 research outputs found

    U.S. v. Parker: Will Those with Standing Please Stand Up

    Get PDF

    DeepPicar: A Low-cost Deep Neural Network-based Autonomous Car

    Full text link
    We present DeepPicar, a low-cost deep neural network based autonomous car platform. DeepPicar is a small scale replication of a real self-driving car called DAVE-2 by NVIDIA. DAVE-2 uses a deep convolutional neural network (CNN), which takes images from a front-facing camera as input and produces car steering angles as output. DeepPicar uses the same network architecture---9 layers, 27 million connections and 250K parameters---and can drive itself in real-time using a web camera and a Raspberry Pi 3 quad-core platform. Using DeepPicar, we analyze the Pi 3's computing capabilities to support end-to-end deep learning based real-time control of autonomous vehicles. We also systematically compare other contemporary embedded computing platforms using the DeepPicar's CNN-based real-time control workload. We find that all tested platforms, including the Pi 3, are capable of supporting the CNN-based real-time control, from 20 Hz up to 100 Hz, depending on hardware platform. However, we find that shared resource contention remains an important issue that must be considered in applying CNN models on shared memory based embedded computing platforms; we observe up to 11.6X execution time increase in the CNN based control loop due to shared resource contention. To protect the CNN workload, we also evaluate state-of-the-art cache partitioning and memory bandwidth throttling techniques on the Pi 3. We find that cache partitioning is ineffective, while memory bandwidth throttling is an effective solution.Comment: To be published as a conference paper at RTCSA 201

    Theory of Drop Formation

    Get PDF
    We consider the motion of an axisymmetric column of Navier-Stokes fluid with a free surface. Due to surface tension, the thickness of the fluid neck goes to zero in finite time. After the singularity, the fluid consists of two halves, which constitute a unique continuation of the Navier-Stokes equation through the singular point. We calculate the asymptotic solutions of the Navier-Stokes equation, both before and after the singularity. The solutions have scaling form, characterized by universal exponents as well as universal scaling functions, which we compute without adjustable parameters

    Structural analysis demonstration of constitutive and life models

    Get PDF
    The overall objective of this program is to demonstrate the applicability of NASA-developed advanced constitutive and life damage models for calculating cyclic structural response and crack initiation in selected components of reusable space propulsion systems. The computer model resulting from this program will enable the user to produce an accurate life prediction of hot gas path, life limiting components of propulsion systems such as the space shuttle main engine (SSME). Previously developed computer models addressing constitutive modeling and life damage will be combined in an advanced finite element analysis to generate a sophisticated baseline life prediction program. A material data base will be established for the constitutive and life models parametrically involving temperature, strain range, strain rate, mean strain/stress, and dwell time. The verified computer program will be used to accomplish the life predictions of three SSME critical components as evidence of the model functionality

    Modeling Life as Cognitive Info-Computation

    Full text link
    This article presents a naturalist approach to cognition understood as a network of info-computational, autopoietic processes in living systems. It provides a conceptual framework for the unified view of cognition as evolved from the simplest to the most complex organisms, based on new empirical and theoretical results. It addresses three fundamental questions: what cognition is, how cognition works and what cognition does at different levels of complexity of living organisms. By explicating the info-computational character of cognition, its evolution, agent-dependency and generative mechanisms we can better understand its life-sustaining and life-propagating role. The info-computational approach contributes to rethinking cognition as a process of natural computation in living beings that can be applied for cognitive computation in artificial systems.Comment: Manuscript submitted to Computability in Europe CiE 201
    corecore