208 research outputs found
The effect of thermal winds on the outbursts evolution of LMXB systems
Theoretical models of accretion discs and observational data indicate that
the X-ray emission from the inner parts of an accretion disc can irradiate its
outer regions and induce a thermal wind, which carries away the mass and
angular momentum from the disc. Our aim is to investigate the influence of the
thermal wind on the outburst light curves of black hole X-ray binary systems.
We carry out numerical simulations of a non-stationary disc accretion with wind
using upgraded open code freddi. We assume that the wind launches only from the
ionised part of the disc and may turn off if the latter shrinks fast enough.
Our estimates of the viscosity parameter are shifted downward compared
to a scenario without a wind. Generally, correction of depends on the
spectral hardness of central X-rays and the disc outer radius, but unlikely to
exceed a factor of 10 in the case of a black hole low-mass X-ray binary (BH
LMXB). We fit 2002 outburst of BH LMXB 4U 1543-47 taking into account the
thermal wind. The mass loss in the thermal wind is of order of the accretion
rate on the central object at the peak of the outburst. New estimate of the
viscosity parameter for the accretion disc in this system is about two
times lower than the previous one. Additionally, we calculate evolution of the
number of hydrogen atoms towards 4U 1543-47 due to the thermal wind from the
hot disc.Comment: 19 pages, 22 figures, accepted for publication in MNRA
Theoretical aspects of the nature of the electronic commerce
Consequently, the development of e-commerce is becoming increasingly important in the context of globalization of economic processes, due to the possibility of achieving global presence and implementation of economic activity on a global scale, global choice of goods, regardless of the geographical position of the subjects
Measurement of the Cross Section Asymmetry of the Reaction gp-->pi0p in the Resonance Energy Region Eg = 0.5 - 1.1 GeV
The cross section asymmetry Sigma has been measured for the photoproduction
of pi0-mesons off protons, using polarized photons in the energy range Eg = 0.5
- 1.1 GeV. The CM angular coverage is Theta = 85 - 125 deg with energy and
angle steps of 25 MeV and 5 deg, respectively. The obtained Sigma data, which
cover the second and third resonance regions, are compared with existing
experimental data and recent phenomenological analyses. The influence of these
measurements on such analyses is also considered
The influence of the dechanneling process on the photon emission by an ultra-relativistc positron channeling in a periodically bent crystal
We investigate, both analytically and numerically, the influence of the
dechanneling process on the parameters of undulator radiation generated by
ultra-relativistic positron channelling along a crystal plane, which is
periodically bent. The bending might be due either to the propagation of a
transverse acoustic wave through the crystal, or due to the static strain as it
occurs in superlattices. In either case the periodically bent crystal serves as
an undulator which allows to generate X-ray and gamma-radiation.
We propose the scheme for accurate quantitative treatment of the radiation in
presence of the dechanneling. The scheme includes (i) the analytic expression
for spectral-angular distribution which contains, as a parameter, the
dechanneling length, (ii) the simulation procedure of the dechanneling process
of a positron in periodically bent crystals. Using these we calculate the
dechanneling lengths of 5 GeV positrons channeling in Si, Ge and W crystals,
and the spectral-angular and spectral distributions of the undulator over broad
ranges of the photons. The calculations are performed for various parameters of
the channel bending.Comment: published in J. Phys. G: Nucl. Part. Phys. 27 (2001) 95-125,
http://www.iop.or
Updated resonance photo-decay amplitudes to 2 GeV
We present the results of an energy-dependent and set of single-energy
partial-wave analyses of single-pion photoproduction data. These analyses
extend from threshold to 2 GeV in the laboratory photon energy, and update our
previous analyses to 1.8 GeV. Photo-decay amplitudes are extracted for the
baryon resonances within this energy range. We consider two photoproduction sum
rules and the contributions of two additional resonance candidates found in our
most recent analysis of elastic scattering data. Comparisons are made
with previous analyses.Comment: Revtex, 26 pages, 3 figures. Postscript figures available from
ftp://clsaid.phys.vt.edu/pub/pr or indirectly from
http://clsaid.phys.vt.edu/~CAPS
Semi-Analytic Stellar Structure in Scalar-Tensor Gravity
Precision tests of gravity can be used to constrain the properties of
hypothetical very light scalar fields, but these tests depend crucially on how
macroscopic astrophysical objects couple to the new scalar field. We develop
quasi-analytic methods for solving the equations of stellar structure using
scalar-tensor gravity, with the goal of seeing how stellar properties depend on
assumptions made about the scalar coupling at a microscopic level. We
illustrate these methods by applying them to Brans-Dicke scalars, and their
generalization in which the scalar-matter coupling is a weak function of the
scalar field. The four observable parameters that characterize the fields
external to a spherically symmetric star (the stellar radius, R, mass, M,
scalar `charge', Q, and the scalar's asymptotic value, phi_infty) are subject
to two relations because of the matching to the interior solution, generalizing
the usual mass-radius, M(R), relation of General Relativity. We identify how
these relations depend on the microscopic scalar couplings, agreeing with
earlier workers when comparisons are possible. Explicit analytical solutions
are obtained for the instructive toy model of constant-density stars, whose
properties we compare to more realistic equations of state for neutron star
models.Comment: 39 pages, 9 figure
Photoproduction of pions and properties of baryon resonances from a Bonn-Gatchina partial wave analysis
Masses, widths and photocouplings of baryon resonances are determined in a
coupled-channel partial wave analysis of a large variety of data. The
Bonn-Gatchina partial wave formalism is extended to include a decomposition of
t- and u-exchange amplitudes into individual partial waves. The multipole
transition amplitudes for and are
given and compared to results from other analyses.Comment: 18 pages, 14 figure
P-wave excited baryons from pion- and photo-induced hyperon production
We report evidence for , , ,
, , and , and find
indications that might have a companion state at 1970\,MeV. The
controversial is not seen. The evidence is derived from a
study of data on pion- and photo-induced hyperon production, but other data are
included as well. Most of the resonances reported here were found in the
Karlsruhe-Helsinki (KH84) and the Carnegie-Mellon (CM) analyses but were
challenged recently by the Data Analysis Center at GWU. Our analysis is
constrained by the energy independent scattering amplitudes from either
KH84 or GWU. The two amplitudes from KH84 or GWU, respectively, lead to
slightly different branching ratios of contributing resonances but the
debated resonances are required in both series of fits.Comment: 22 pages, 28 figures. Some additional sets of data are adde
Neuropsychological evaluation of cognitive disorders in children after COVID-19
The article presents the results of neuropsychological remote and face-to-face testing of 25 children aged 12 to 17 years in the nearest (during and 1-2 weeks after the treatment) and later period (2-12 months) after COVID-19 infection with predominant respiratory tract infection, organized in Ekaterinburg in the State Autonomous Institution "Children's Hospital № 8". Indication of family contact with patients with a new coronavirus infection was found in all patients, a positive nasopharyngeal swab for SARS-CoV-2 RNA by PCR was found in 58%, non-focal neurological complaints were found in 54% of children. The control group consisted of 25 pupils of Moscow comprehensive schools (14 girls and 11 boys) aged between 12 and 16 years who were examined before the pandemic. The methods included: investigation of the kinesthetic, spatial, dynamic, graphic praxis; auditory-motor coordination; visual, object-constructive gnosis; auditory-speech, visual memory; voluntary attention; thinking. Significant differences with the results of neuropsychological tests performed in children in the control group were found, allowing us to assert impairment of memory, attention, visual gnosis, visual-spatial function, kinesthetic and dynamic praxis, verbal and non-verbal component of thinking. According to A.R. Luria's theory, the topic of the disorders involves the temporo-parieto-occipital, mediobasal, frontotemporal parts of the brain, the reticular formation and limbic structures. This necessitates the development of corrective educational programs and an in-depth diagnostic algorithm that determines the morphological substrate of cognitive disorders in children, who have undergone COVID-19. © 2022 PAGEPress Publications. All rights reserved.Ministry of Health of the Russian FederationPirogov Russian National Research Medical University, RNRMUThe study was funded by Pirogov Russian National Research Medical University of the Ministry of Health of the Russian Federation, Moscow
- …