10,680 research outputs found

    Non-zero trajectories for long-run net migration assumptions in global population projection models

    Get PDF
    Background: Little attention is given to the role of migration in global population projection models. Most demographers set future levels of net migration on trajectories towards zero in all countries, nullifying the impact of migration on long-run projected populations. Yet as fertility and mortality rates fall, the role of migration on future population change is becoming more pronounced. Objective: In this paper we develop future long-run migration scenarios to provide a range of possible outcomes. Methods: Our alternative migration scenarios are linked to the Shared Socioeconomic Pathways (SSP), widely used in research on global environmental change. These are utilized as inputs for a global cohort component projection model to obtain population totals up until 2100 for all countries. Contribution: The results illustrate the important role of migration assumptions in long run projections, especially in post demographic transition countries. Further, they provide plausible alternatives to projections based on the commonly used, but poorly justified, convergence to the zero net migration assumption

    Astrophysical gyrokinetics: Turbulence in pressure-anisotropic plasmas at ion scales and beyond

    Full text link
    We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. Turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it, and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (2015). At scales at and below the ion Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalisation of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvenic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfven waves transition into kinetic Alfven waves. Secondly, we derive and discuss a general free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfven waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy can cause large variations in the ion-to-electron heating ratio due to the dissipation of Alfvenic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects the turbulent fluctuation spectra, the differential heating of particle species, and the ratio of parallel and perpendicular phase mixing in space and astrophysical plasmas.Comment: 59 pages, 6 figures, accepted for publication in Journal of Plasma Physics (original 28 Nov 2017); abstract abridge

    Ranking hospitals on avoidable death rates derived from retrospective case record review: methodological observations and limitations

    Get PDF
    This is the final version. Available from BMJ Pubishing Group via the DOI in this record.Reducing the number of avoidable deaths in hospital is the focus of many quality improvement initiatives worldwide.1 Comparing indicators of avoidable mortality between different hospitals could help to target improvement efforts, but optimally defining and measuring hospital deaths that could be deemed preventable remains a challenge.2 Unlike performance comparisons based on hospital standardised mortality ratio (HSMR), a new policy initiative announced by the UK Government will rank hospitals for avoidable mortality based on case reviews of 2000 deaths in English hospitals each year. Although this initiative aims to overcome limitations of current policies, two statistical properties of the proposed approach mean that it is unsuitable for classifying hospital performance.Cancer Research UK Clinician Scientist Fellowship awar

    The H II Region/PDR Connection: Self-Consistent Calculations of Physical Conditions in Star-Forming Regions

    Get PDF
    We have performed a series of calculations designed to reproduce infrared diagnostics used to determine physical conditions in star forming regions. We self-consistently calculate the thermal and chemical structure of an H II region and photodissociation region (PDR) that are in pressure equilibrium. This differs from previous work, which used separate calculations for each gas phase. Our calculations span a wide range of stellar temperatures, gas densities, and ionization parameters. We describe improvements made to the spectral synthesis code Cloudy that made these calculations possible. These include the addition of a molecular network with ~1000 reactions involving 68 molecular species and improved treatment of the grain physics. Data from the Spitzer First Look Survey, along with other archives, are used to derive important physical characteristics of the H II region and PDR. These include stellar temperatures, electron densities, ionization parameters, UV radiation flux, and PDR density. Finally, we calculate the contribution of the H II region to PDR emission line diagnostics, which allows for a more accurate determination of physical conditions in the PDR.Comment: 60 pages, 35 figures, to be published in the Astrophysical Journal. Version with full resolution is available at http://www.pa.uky.edu/~nicholas/hii_pdr_high_res.pd
    • …
    corecore