6,558 research outputs found
Analytical and experimental performance of a dual-mode traveling wave tube and multistage depressed collector
A computational procedure for the design of traveling-wave-tube(TWT)/refocuser/multistage depressed collector (MDC) systems was used to design a short, permanent-magnet refocusing system and a highly efficient MDC for a medium-power, dual-mode, 4.8- to 9.6-GHz TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam and follow the trajectories of representative charges from the radiofrequency (RF) input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semiquantitatively by injecting representative secondary-electron-emission current into the MDA analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particluar form of isptropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties
Systematic review of psychological approaches to the management of neuropsychiatric symptoms of dementia
Objective: The authors systematically reviewed the literature on psychological approaches to treating the neuropsychiatric symptoms of dementia.Method: Reports of studies that examined effects of any therapy derived from a psychological approach that satisfied prespecified criteria were reviewed. Data were extracted, the quality of each study was rated, and an overall rating was given to each study by using the Oxford Centre for Evidence-Based Medicine criteria.Results: A total of 1,632 studies were identified, and 162 satisfied the inclusion criteria for the review. Specific types of psychoeducation for caregivers about managing neuropsychiatric symptoms were effective treatments whose benefits lasted for months, but other caregiver interventions were not. Behavioral management techniques that are centered on individual patients' behavior or on caregiver behavior had similar benefits, as did cognitive stimulation. Music therapy and Snoezelen, and possibly sensory stimulation, were useful during the treatment session but had no longer-term effects; interventions that changed the visual environment looked promising, but more research is needed.Conclusions: Only behavior management therapies, specific types of caregiver and residential care staff education, and possibly cognitive stimulation appear to have lasting effectiveness for the management of dementia-associated neuropsychiatric symptoms. Lack of evidence regarding other therapies is not evidence of lack of efficacy. Conclusions are limited because of the paucity of high-quality research ( only nine level-1 studies were identified). More high-quality investigation is needed
Chloroplast damage induced by the inhibition of fatty acid synthesis triggers autophagy in chlamydomonas
Fatty acids are synthesized in the stroma of plant and algal chloroplasts by the fatty acid synthase complex. Newly synthesized fatty acids are then used to generate plastidial lipids that are essential for chloroplast structure and function. Here, we show that inhibition of fatty acid synthesis in the model alga Chlamydomonas reinhardtii activates autophagy, a highly conserved catabolic process by which cells degrade intracellular material under adverse conditions to maintain cell homeostasis. Treatment of Chlamydomonas cells with cerulenin, a specific fatty acid synthase inhibitor, stimulated lipidation of the autophagosome protein ATG8 and enhanced autophagic flux. We found that inhibition of fatty acid synthesis decreased monogalactosyldiacylglycerol abundance, increased lutein content, down-regulated photosynthesis, and increased the production of reactive oxygen species. Electron microscopy revealed a high degree of thylakoid membrane stacking in cerulenin-treated cells. Moreover, global transcriptomic analysis of these cells showed an up-regulation of genes encoding chloroplast proteins involved in protein folding and oxidative stress and the induction of major catabolic processes, including autophagy and proteasome pathways. Thus, our results uncovered a link between lipid metabolism, chloroplast integrity, and autophagy through a mechanism that involves the activation of a chloroplast quality control system.Ministerio de Economía y Competitividad BFU2015-68216-PJunta de Andalucía CVI-7336, BIO2015-74432-JI
Verification of computer-aided designs of traveling-wave tubes utilizing novel dynamic refocusers and graphite electrodes for the multistage depressed collector
A computational procedure for the design of TWT-refocuser-MDC systems was used to design a short dynamic refocusing system and highly efficient four-stage depressed collector for a 200-W, 8- to 18-GHz, TWT. The computations were carried out with advanced, multidimensional computer programs which model the electron beam as a series of disks of charge and follow their trajectories from the RF input of the TWT, through the slow-wave structure and refocusing section, to their points of impact in the depressed collector. Secondary emission losses in the MDC were treated semi-quantitatively by injecting a representative beam of secondary electrons into the MDC analysis at the point of impact of each primary beam. A comparison of computed and measured TWT and MDC performance showed very good agreement. The electrodes of the MDC were fabricated from a particular form of isotropic graphite that was selected for its low secondary electron yield, ease of machinability, and vacuum properties. This MDC was tested (at CW) for more than 1000 hr with negligible degradation in TWT and MDC performances
F-111 Systems Engineering Case Study
The systems engineering lessons from the F-111 program will facilitate learning by emphasizing practical applications and resulting outcomes to the current processes and tools used on today s programs. The student will understand the long-term consequences of systems engineering as implemented on the F-111 and its effect on cost, schedule, and operational effectiveness. The reader can then postulate outcomes of alternate decisions at the program/system level
Phosphorus Availability Regulates TORC1 Signaling via LST8 in Chlamydomonas
Target of rapamycin complex 1 (TORC1) is a central regulator of cell growth. It balances anabolic and catabolic processes in response to nutrients, growth factors, and energy availability. Nitrogen- and carbon-containing metabolites have been shown to activate TORC1 in yeast, animals, and plants. Here, we show that phosphorus (P) regulates TORC1 signaling in the model green alga Chlamydomonas (Chlamydomonas reinhardtii) via LST8, a conserved TORC1 subunit that interacts with the kinase domain of TOR. P starvation results in a sharp decrease in LST8 abundance and downregulation of TORC1 activity. A hypomorphic lst8 mutation resulted in decreased LST8 abundance, and it both reduced TORC1 signaling and altered the cellular response to P starvation. Additionally, we found that LST8 levels and TORC1 activity were not properly regulated in a mutant defective in the transcription factor PSR1, which is the major mediator of P deprivation responses in Chlamydomonas. Unlike wild-type cells, the psr1 mutant failed to downregulate LST8 abundance and TORC1 activity when under P limitation. These results identify PSR1 as an upstream regulator of TORC1 and demonstrate that TORC1 is a key component in P signaling in Chlamydomonas.España Ministerio de Economía y Competitividad (grants BFU2015-68216-P and PGC2018-099048- B-100 to J.L.C. and grant BIO2015-74432-JIN to M.E.P.-P.)National Science Foundation (CAREER award MCB-1552522 to L.M.H. and grant MCB-1616820 to J.G.U.)European Commission (grant number 750996
Structural Material Property Tailoring Using Deep Neural Networks
Advances in robotics, artificial intelligence, and machine learning are
ushering in a new age of automation, as machines match or outperform human
performance. Machine intelligence can enable businesses to improve performance
by reducing errors, improving sensitivity, quality and speed, and in some cases
achieving outcomes that go beyond current resource capabilities. Relevant
applications include new product architecture design, rapid material
characterization, and life-cycle management tied with a digital strategy that
will enable efficient development of products from cradle to grave. In
addition, there are also challenges to overcome that must be addressed through
a major, sustained research effort that is based solidly on both inferential
and computational principles applied to design tailoring of functionally
optimized structures. Current applications of structural materials in the
aerospace industry demand the highest quality control of material
microstructure, especially for advanced rotational turbomachinery in aircraft
engines in order to have the best tailored material property. In this paper,
deep convolutional neural networks were developed to accurately predict
processing-structure-property relations from materials microstructures images,
surpassing current best practices and modeling efforts. The models
automatically learn critical features, without the need for manual
specification and/or subjective and expensive image analysis. Further, in
combination with generative deep learning models, a framework is proposed to
enable rapid material design space exploration and property identification and
optimization. The implementation must take account of real-time decision cycles
and the trade-offs between speed and accuracy
Recommended from our members
G-Force PD: a global initiative in coordinating stem cell-based dopamine treatments for Parkinson's disease.
Translating new cell-based therapies to the clinic for patients with neurodegenerative disorders is complex. It involves pre-clinical testing of the cellular product and discussions with several regulatory agencies, as well as ethical debates. In an attempt to support efforts around the world, we set up a global consortium that brings together the major funded teams working on developing a stem cell-derived neural transplantation therapy for Parkinson's disease (PD). This consortium, G-Force PD, involves teams from Europe, USA, and Japan, and has already met on two occasions to discuss common problems, solutions, and the roadmap to the clinic. In this short review, we lay out the brief history and rationale for this initiative and discuss some of the issues that arose in our most recent meeting (May 2015) as we consider undertaking first-in-human clinical trials with stem cell-derived neurons for PD.We would like to thank all the respective funding agencies that support our work in this area including the EU FP7 programmes that fund TRANSEURO (HEALTH-F5-2010-242003) and Neurostemcellrepair (HEALTH-2013-INNOVATION-1-602278), NYSTEM (C028503) that supports the work of Studer et al, and a grant from the Network Program for Realization of Regenerative Medicine from the Japan Agency for Medical Research and Development (AMED) that supports the work of Takahashi et al.
We would also like to thank Parkinson’s UK for help funding the first GForce-PD meeting in London and the Parkinson’s Disease Foundation (PDF) and Weill Cornell for the second in New York.This is the final version of the article. It first appeared from NPG via http://dx.doi.org/10.1038/npjparkd.2015.1
Ultra High Power and Efficiency Space Traveling-Wave Tube Amplifier Power Combiner with Reduced Size and Mass for NASA Missions
In the 2008 International Microwave Symposium (IMS) Digest version of our paper, recent advances in high power and efficiency space traveling-wave tube amplifiers (TWTAs) for NASA s space-to-Earth communications are presented. The RF power and efficiency of a new K-Band amplifier are 40 W and 50 percent and that of a new Ka-Band amplifier are 200 W and 60 percent. An important figure-of-merit, which is defined as the ratio of the RF power output to the mass (W/kg) of a TWT, has improved by a factor of ten over the previous generation Ka-Band devices. In this extended paper, a high power, high efficiency Ka-band combiner for multiple TWTs, based on a novel hybrid magic-T waveguide circuit design, is presented. The measured combiner efficiency is as high as 90 percent. In addition, at the design frequency of 32.05 GHz, error-free uncoded BPSK/QPSK data transmission at 8 megabits per second (Mbps), which is typical for deep space communications is demonstrated. Furthermore, QPSK data transmission at 622 Mbps is demonstrated with a low bit error rate of 2.4x10(exp -8), which exceeds the deep space state-of-the-art data rate transmission capability by more than two orders of magnitude. A potential application of the TWT combiner is in deep space communication systems for planetary exploration requiring transmitter power on the order of a kilowatt or higher
- …