19,338 research outputs found

    The Chandra Dust Scattering Halo of Galactic Center transient Swift J174540.7-290015

    Get PDF
    We report the detection of a dust scattering halo around a recently discovered X-ray transient, Swift J174540.7-290015, which in early February of 2016 underwent one of the brightest outbursts (F_X ~ 5e-10 erg/cm^2/s) observed from a compact object in the Galactic Center field. We analyze four Chandra images that were taken as follow-up observations to Swift discoveries of new Galactic Center transients. After adjusting our spectral extraction for the effects of detector pileup, we construct a point spread function for each observation and compare it to the GC field before the outburst. We find residual surface brightness around Swift J174540.7-290015, which has a shape and temporal evolution consistent with the behavior expected from X-rays scattered by foreground dust. We examine the spectral properties of the source, which shows evidence that the object transitioned from a soft to hard spectral state as it faded below L_X ~ 1e36 erg/s. This behavior is consistent with the hypothesis that the object is a low mass X-ray binary in the Galactic Center.Comment: Accepted for publication in Ap

    Iron fluorescence from within the innermost stable orbit of black hole accretion disks

    Get PDF
    The fluorescent iron Ka line is a powerful observational probe of the inner regions of black holes accretion disks. Previous studies have assumed that only material outside the radius of marginal stability can contribute to the observed line emission. Here, we show that fluorescence by material inside the radius of marginal stability, which is in the process of spiralling towards the event horizon, can have a observable influence on the iron line profile and equivalent width. For concreteness, we consider the case of a geometrically thin accretion disk, around a Schwarzschild black hole, in which fluorescence is excited by an X-ray source placed at some height above the disk and on the axis of the disk. Fully relativistic line profiles are presented for various source heights and efficiencies. It is found that the extra line flux generally emerges in the extreme red wing of the iron line, due to the large gravitational redshift experienced by photons from the region within the radius of marginal stability. We apply our models to the variable iron line seen in the ASCA spectrum of the Seyfert nucleus MCG-6-30-15. It is found that the change in the line profile, equivalent width, and continuum normalization, can be well explained as being due to a change in the height of the source above the disk. We discuss the implications of these results for distinguishing rapidly-rotating black holes from slowly rotating holes using iron line diagnostics.Comment: 20 pages, LaTeX. Accepted for publication in Astrophysical Journal. Figures 3 to 7 replaced with corrected versions (previous figures affected by calculational error). Some changes in the best fitting parameter

    The Equilibrium Photoionized Absorber in 3C351

    Full text link
    We present two ROSAT PSPC observations of the radio-loud, lobe-dominated quasar 3C 351, which shows an `ionized absorber' in its X-ray spectrum. The factor 1.7 change in flux in the \sim2~years between the observations allows a test of models for this ionized absorber. The absorption feature at ~0.7 keV (quasar frame) is present in both spectra but with a lower optical depth when the source intensity - and hence the ionizing flux at the absorber - is higher, in accordance with a simple, single-zone, equilibrium photoionization model. Detailed modeling confirms this agrement quantitatively. The maximum response time of 2 years allows us to limit the gas density: n_e > 2 x 10^4 cm^{-3}; and the distance of the ionized gas from the central source R < 19 pc. This produces a strong test for a photoionized absorber in 3C~351: a factor 2 flux change in ~1 week in this source must show non-equilibrium effects in the ionized absorber.Comment: 10 pages, 3 figures, accepted by Ap

    X-ray properties of an Unbiased Hard X-ray Detected Sample of AGN

    Full text link
    The SWIFT gamma ray observatory's Burst Alert Telescope (BAT) has detected a sample of active galactic nuclei (AGN) based solely on their hard X-ray flux (14-195 keV). In this paper, we present for the first time {\it XMM-Newton} X-ray spectra for 22 BAT AGNs with no previously analyzed X-ray spectra. If our sources are a representative sample of the BAT AGN, as we claim, our results present for the first time global X-ray properties of an unbiased towards absorption (nH=0.03_H = 0.03), AGN sample. We find 9/22 low absorption (nH<1023_H < 10^{23} cm2^{-2}), simple power law model sources, where 4 of these sources have a statistically significant soft component. Among these sources, we find the presence of a warm absorber statistically significant for only one Seyfert 1 source, contrasting with the ASCA results of \citet{rey97} and \citet{geo98}, who find signatures of warm absorption in half or more of their Seyfert 1 samples at similar redshifts. Additionally, the remaining sources (14/22) have more complex spectra, well-fit by an absorbed power law at E>2.0E > 2.0 keV. Five of the complex sources are classified as Compton-thick candidates. Further, we find four more sources with properties consistent with the hidden/buried AGN reported by Ueda {\it et al.} (2007). Finally, we include a comparison of the {\it XMM-Newton} EPIC spectra with available SWIFT X-ray Telescope (XRT) observations. From these comparisons, we find 6/16 sources with varying column densities, 6/16 sources with varying power law indices, and 13/16 sources with varying fluxes, over periods of hours to months. Flux and power law index are correlated for objects where both parameters vary.Comment: 39 pages, 16 figures, accepted to Ap

    Comparing P-stars with Observations

    Get PDF
    P-stars are compact stars made of up and down quarks in β\beta-equilibrium with electrons in a chromomagnetic condensate. P-stars are able to account for compact stars as well as stars with radius comparable with canonical neutron stars. We compare p-stars with different available observations. Our results indicate that p-stars are able to reproduce in a natural manner several observations from isolated and binary pulsars.Comment: 15 pages, 2 figures; accepted for publication in Astrophysical Journa

    The soundscape of neonatal intensive care: a mixed-methods study of the parents’ experience

    Get PDF
    Parents who have infants hospitalised in neonatal intensive care units (NICUs) experience high levels of stress, including post-traumatic stress disorder (PTSD) symptoms. However, whether sounds contribute to parents’ stress remains largely unknown. Critically, researchers lack a com-prehensive instrument to investigate the relationship between sounds in NICUs and parental stress. To address this gap, this report presents the “Soundscape of NICU Questionnaire” (SON-Q), which was developed specifically to capture parents’ perceptions and beliefs about the impact that sound had on them and their infants, from pre-birth throughout the NICU stay and in the first postdischarge period. Parents of children born preterm (n = 386) completed the SON-Q and the Perinatal PTSD Questionnaire (PPQ). Principal Component Analysis identifying underly-ing dimensions comprising the parental experience of the NICU soundscape was followed by an exploration of the relationships between subscales of the SON-Q and the PPQ. Moderation analy-sis was carried out to further elucidate relationships between variables. Finally, thematic analy-sis was employed to analyse one memory of sounds in NICU open question. The results highlight systematic associations between aspects of the NICU soundscape and parental stress/trauma. The findings underscore the importance of developing specific studies in this area and devising inter-ventions to best support parents’ mental health, which could in turn support infants’ develop-mental outcomes

    Convection and AGN Feedback in Clusters of Galaxies

    Full text link
    A number of studies have shown that the convective stability criterion for the intracluster medium (ICM) is very different from the Schwarzchild criterion due to the effects of anisotropic thermal conduction and cosmic rays. Building on these studies, we develop a model of the ICM in which a central active galactic nucleus (AGN) accretes hot intracluster plasma at the Bondi rate and produces cosmic rays that cause the ICM to become convectively unstable. The resulting convection heats the intracluster plasma and regulates its temperature and density profiles. By adjusting a single parameter in the model (the size of the cosmic-ray acceleration region), we are able to achieve a good match to the observed density and temperature profiles in a sample of eight clusters. Our results suggest that convection is an important process in cluster cores. An interesting feature of our solutions is that the cooling rate is more sharply peaked about the cluster center than is the convective heating rate. As a result, in several of the clusters in our sample, a compact cooling flow arises in the central region with a size R that is typically a few kpc. The cooling flow matches onto a Bondi flow at smaller radii. The mass accretion rate in the Bondi flow is equal to, and controlled by, the rate at which mass flows in through the cooling flow. Our solutions suggest that the AGN regulates the mass accretion rate in these clusters by controlling R: if the AGN power rises above the equilibrium level, R decreases, the mass accretion rate drops, and the AGN power drops back down to the equilibrium level.Comment: 41 pages, 7 figures, accepted for publication in ApJ. Changes in this version: extended discussion of Bondi accretion in clusters, better mass model, new numerical solution
    corecore