4,388 research outputs found

    Effect of the reservoir size on gas adsorption in inhomogeneous porous media

    Get PDF
    We study the influence of the relative size of the reservoir on the adsorption isotherms of a fluid in disordered or inhomogeneous mesoporous solids. We consider both an atomistic model of a fluid in a simple, yet structured pore, whose adsorption isotherms are computed by molecular simulation, and a coarse-grained model for adsorption in a disordered mesoporous material, studied by a density functional approach in a local mean-field approximation. In both cases, the fluid inside the porous solid exchanges matter with a reservoir of gas that is at the same temperature and chemical potential and whose relative size can be varied, and the control parameter is the total number of molecules present in the porous sample and in the reservoir. Varying the relative sizes of the reservoir and the sample may change the shape of the hysteretic isotherms, leading to a "reentrant" behavior compared to the grand-canonical isotherm when the latter displays a jump in density. We relate these phenomena to the organization of the metastable states that are accessible for the adsorbed fluid at a given chemical potential or density.Comment: 16 page

    Scaling Behavior of the Landau Gauge Overlap Quark Propagator

    Get PDF
    The properties of the momentum space quark propagator in Landau gauge are examined for the overlap quark action in quenched lattice QCD. Numerical calculations are done on three lattices with different lattice spacings and similar physical volumes to explore the approach of the quark propagator towards the continuum limit. We have calculated the nonperturbative momentum-dependent wavefunction renormalization function Z(p2)Z(p^2) and the nonperturbative mass function M(p2)M(p^2) for a variety of bare quark masses and extrapolate to the chiral limit. We find the behavior of Z(p2)Z(p^2) and M(p2)M(p^2) are in good agreement for the two finer lattices in the chiral limit. The quark condensate is also calculated.Comment: 3 pages, Lattice2003(Chiral fermions

    Quark propagator in a covariant gauge

    Get PDF
    Using mean--field improved gauge field configurations, we compare the results obtained for the quark propagator from Wilson fermions and Overlap fermions on a \3 lattice at a spacing of a=0.125(2)a=0.125(2) fm.Comment: 5 pages, 8 figures, talk given by F.D.R. Bonnet at LHP 2001 workshop, Cairns, Australi

    The FLIC Overlap Quark Propagator

    Get PDF
    FLIC overlap fermions are a variant of the standard (Wilson) overlap action, with the FLIC (Fat Link Irrelevant Clover) action as the overlap kernel rather than the Wilson action. The structure of the FLIC overlap fermion propagator in momentum space is studied, and a comparison against previous studies of the Wilson overlap propagator in quenched QCD is performed. To explore the scaling properties of the propagator for the two actions, numerical calculations are performed in Landau Gauge across three lattices with different lattice spacing aa and similar physical volumes. We find that at light quark masses the acti ons agree in both the infrared and the ultraviolet, but at heavier masses some disagreement in the ultraviolet appears. This is attributed to the two action s having different discretisation errors with the FLIC overlap providing superior performance in this regime. Both actions scale reasonably, but some scaling violations are observed

    Diversidade e distribuição espacial de bromeliáceas epifíticas do Altíssimo Rio Tibagi - Paraná - Brasil.

    Get PDF
    O presente estudo teve como objetivo caracterizar a diversidade e a distribuição espacial das bromeliáceas epifíticas na região do altíssimo rio Tibagi, considerando os fatores geomorfológicos, pedológicos, climáticos e vegetacionais. A avaliação fitossociológica das bromeliáceas foi realizada mediante instalação de parcelas em número variável nas três áreas de estudo. O levantamento florístico foi complementado por observações nas áreas adjacentes às parcelas, respeitando a compartimentação geomorfológica, pedológica e vegetacional. Foram registradas onze espécies de bromeliáceas no total, tendo sido sete delas observadas na área da cabeceira do rio Tibagi, oito no cânion e nove na floresta da foz do rio Bugio. A riqueza foi relacionada, principalmente, com as condições macro e microclimáticas. A umidade fornecida pelas nuvens e chuvas formadas na cuesta do segundo planalto, assim como, em microescala, a umidade atmosférica gerada pelas cachoeiras existentes no cânion e originada da evaporação da água dos Organossolos, é o fator climático fundamental na definição dos padrões encontrados. Considerando a distribuição horizontal das espécies, a diminuição de bromeliáceas da porção mais próxima ao canal para a mais distante está atrelada ao gradiente microclimático, formado pela redução em umidade relativa associada à diminuição em luminosidade

    Infinite Volume and Continuum Limits of the Landau-Gauge Gluon Propagator

    Get PDF
    We extend a previous improved action study of the Landau gauge gluon propagator, by using a variety of lattices with spacings from a=0.17a = 0.17 to 0.41 fm, to more fully explore finite volume and discretization effects. We also extend a previously used technique for minimizing lattice artifacts, the appropriate choice of momentum variable or ``kinematic correction'', by considering it more generally as a ``tree-level correction''. We demonstrate that by using tree-level correction, determined by the tree-level behavior of the action being considered, it is possible to obtain scaling behavior over a very wide range of momenta and lattice spacings. This makes it possible to explore the infinite volume and continuum limits of the Landau-gauge gluon propagator.Comment: 24 pages RevTex, 18 figures; Responses to referee comments, minor change

    Hadron Properties with FLIC Fermions

    Full text link
    The Fat-Link Irrelevant Clover (FLIC) fermion action provides a new form of nonperturbative O(a)-improvement in lattice fermion actions offering near continuum results at finite lattice spacing. It provides computationally inexpensive access to the light quark mass regime of QCD where chiral nonanalytic behaviour associated with Goldstone bosons is revealed. The motivation and formulation of FLIC fermions, its excellent scaling properties and its low-lying hadron mass phenomenology are presented.Comment: 29 pages, 13 figures, 6 tables. Contribution to lecure notes in 2nd Cairns Topical Workshop on Lattice Hadron Physics 2003 (LHP 2003), Cairns, Australia, 22-30 Jul 200

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1

    Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing

    Get PDF
    We present the theoretical and analytical bases of optimal techniques to measure weak gravitational shear from images of galaxies. We first characterize the geometric space of shears and ellipticity, then use this geometric interpretation to analyse images. The steps of this analysis include: measurement of object shapes on images, combining measurements of a given galaxy on different images, estimating the underlying shear from an ensemble of galaxy shapes, and compensating for the systematic effects of image distortion, bias from PSF asymmetries, and `"dilution" of the signal by the seeing. These methods minimize the ellipticity measurement noise, provide calculable shear uncertainty estimates, and allow removal of systematic contamination by PSF effects to arbitrary precision. Galaxy images and PSFs are decomposed into a family of orthogonal 2d Gaussian-based functions, making the PSF correction and shape measurement relatively straightforward and computationally efficient. We also discuss sources of noise-induced bias in weak lensing measurements and provide a solution for these and previously identified biases.Comment: Version accepted to AJ. Minor fixes, plus a simpler method of shape weighting. Version with full vector figures available via http://www.astro.lsa.umich.edu/users/garyb/PUBLICATIONS
    corecore