53 research outputs found

    Enveloping Sophisticated Tools into Process-Centered Environments

    Get PDF
    We present a tool integration strategy based on enveloping pre-existing tools without source code modifications or recompilation, and without assuming an extension language, application programming interface, or any other special capabilities on the part of the tool. This Black Box enveloping (or wrapping) idea has existed for a long time, but was previously restricted to relatively simple tools. We describe the design and implementation of, and experimentation with, a new Black Box enveloping facility intended for sophisticated tools --- with particular concern for the emerging class of groupware applications

    Using Role Components to Implement Collaboration-Based Designs

    No full text
    In this paper we present a method of code implementation that works in conjunction with collaboration and responsibility based analysis modeling techniques to achieve better code reuse and resilience to change. Our approach maintains a closer mapping from responsibilities in the analysis model to entities in the implementation. In so doing, it leverages the features of flexible design and design reuse found in collaboration-based design models to provide similar adaptability and reuse in the implementation. Our approach requires no special development tools and uses only standard features available in the C++ language. In an earlier paper we described the basic mechanisms used by our approach and discussed its advantages in comparison to the framework approach. In this paper we show how our approach combines code and design reuse, describing specific techniques that can be used in the development of larger applications. 1 Introduction The notion of collaborations is well accepted in ..

    Tokamak plasma self-organization-synergetics of magnetic trap plasmas

    No full text
    Analysis of a wide range of experimental results in plasma magnetic confinement investigations shows that in most cases, plasmas are self-organized. In the tokamak case, it is realized in the self-consistent pressure profile, which permits the tokamak plasma to be macroscopically MHD stable. Existing experimental data permit suggesting a hypothesis about the mechanism of pressure profile regulation and to give an explanation of such unusual phenomena as a nonlocal character of transport coefficients, enhanced speed of heat/cold pulse propagation and many modes of tokamak operation

    ISDE

    No full text
    corecore