16,269 research outputs found

    A two-layer shallow water model for bedload sediment transport: convergence to Saint-Venant-Exner model

    Get PDF
    A two-layer shallow water type model is proposed to describe bedload sediment transport. The upper layer is filled by water and the lower one by sediment. The key point falls on the definition of the friction laws between the two layers, which are a generalization of those introduced in Fern\'andez-Nieto et al. (ESAIM: M2AN, 51:115-145, 2017). This definition allows to apply properly the two-layer shallow water model for the case of intense and slow bedload sediment transport. Moreover, we prove that the two-layer model converges to a Saint-Venant-Exner system (SVE) including gravitational effects when the ratio between the hydrodynamic and morphodynamic time scales is small. The SVE with gravitational effects is a degenerated nonlinear parabolic system. This means that its numerical approximation is very expensive from a computational point of view, see for example T. Morales de Luna et al. (J. Sci. Comp., 48(1): 258-273, 2011). In this work, gravitational effects are introduced into the two-layer system without such extra computational cost. Finally, we also consider a generalization of the model that includes a non-hydrostatic pressure correction for the fluid layer and the boundary condition at the sediment surface. Numerical tests show that the model provides promising results and behave well in low transport rate regimes as well as in many other situations

    Formal deduction of the Saint-Venant-Exner model including arbitrarily sloping sediment beds and associated energy

    Get PDF
    In this work we present a deduction of the Saint-Venant-Exner model through an asymptotic analysis of the Navier-Stokes equations. A multi-scale analysis is performed in order to take into account that the velocity of the sediment layer is smaller than the one of the fluid layer. This leads us to consider a shallow water type system for the fluid layer and a lubrication Reynolds equation for the sediment one. This deduction provides some improvements with respect to the classical Saint-Venant-Exner model: (i) the deduced model has an associated energy. Moreover, it allows us to explain why classical models do not have an associated energy and how to modify them in order to recover a model with this property. (ii) The model incorporates naturally a necessary modification that must be taken into account in order to be applied to arbitrarily sloping beds. Furthermore, we show that this modification is different of the ones considered classically, and that it coincides with a classical one only if the solution has a constant free surface. (iii) The deduced solid transport discharge naturally depends on the thickness of the moving sediment layer, what allows to ensure sediment mass conservation. Moreover, we include a simplified version of the model for the case of quasi-stationary regimes. Some of these simplified models correspond to the generalization of classical ones such as Meyer-Peter&\&M\"uller and Ashida-Michiue models. Three numerical tests are presented to study the evolution of a dune for several definition of the repose angle, to see the influence of the proposed definition of the effective shear stress in comparison with the classical one, and by comparing with experimental data.Comment: 44 pages, sumbitted to Advances in Water Resources 17 july 201

    Neutron background at the Canfranc Underground Laboratory and its contribution to the IGEX-DM dark matter experiment

    Full text link
    A quantitative study of the neutron environment in the Canfranc Underground Laboratory has been performed. The analysis is based on a complete set of simulations and, particularly, it is focused on the IGEX-DM dark matter experiment. The simulations are compared to the IGEX-DM low energy data obtained with different shielding conditions. The results of the study allow us to conclude, with respect to the IGEX-DM background, that the main neutron population, coming from radioactivity from the surrounding rock, is practically eliminated after the implementation of a suitable neutron shielding. The remaining neutron background (muon-induced neutrons in the shielding and in the rock) is substantially below the present background level thanks to the muon veto system. In addition, the present analysis gives us a further insight on the effect of neutrons in other current and future experiments at the Canfranc Underground Laboratory. The comparison of simulations with the body of data available has allowed to set the flux of neutrons from radioactivity of the Canfranc rock, (3.82 +- 0.44) x 10^{-6} cm^{-2} s^{-1}, as well as the flux of muon-induced neutrons in the rock, (1.73 +- 0.22(stat) \+- 0.69(syst)) x 10^{-9} cm^{-2} s^{-1}, or the rate of neutron production by muons in the lead shielding, (4.8 +- 0.6 (stat) +- 1.9 (syst)) x 10^{-9} cm^{-3} s^{-1}.Comment: 17 pages, 8 figures, elsart document class; final version to appear in Astroparticle Physic

    A multi-wavelength view of magnetic flaring from PMS stars

    Get PDF
    Flares from the Sun and other stars are most prominently observed in the soft X-ray band. Most of the radiated energy, however, is released at optical/UV wavelengths. In spite of decades of investigation, the physics of flares is not fully understood. Even less is known about the powerful flares routinely observed from pre-main sequence stars, which might significantly influence the evolution of circumstellar disks. Observations of the NGC2264 star forming region were obtained in Dec. 2011, simultaneously with three telescopes, Chandra (X-rays), CoRoT (optical), and Spitzer (mIR), as part of the "Coordinated Synoptic Investigation of NGC2264" (CSI-NGC2264). Shorter Chandra and CoRoT observations were also obtained in March 2008. We analyzed the lightcurves to detect X-ray flares with an optical and/or mIR counterpart. Basic flare properties from the three datasets, such as emitted energies and peak luminosities, were then compared to constrain the spectral energy distribution of the flaring emission and the physical conditions of the emitting regions. Flares from stars with and without circumstellar disks were also compared to establish any difference that might be attributed to the presence of disks. Seventy-eight X-ray flares with an optical and/or mIR counterpart were detected. Their optical emission is found to correlate well with, and to be significantly larger than, the X-ray emission. The slopes of the correlations suggest that the difference becomes smaller for the most powerful flares. The mIR flare emission seems to be strongly affected by the presence of a circumstellar disk: flares from stars with disks have a stronger mIR emission with respect to stars without disks. This might be attributed to the reprocessing of the optical (and X-ray) flare emission by the inner circumstellar disk, providing evidence for flare-induced disk heating.Comment: 16 pages (36 including appendixes), 8 figures (main text), accepted for publication by Astronomy & Astrophysics (section 8

    Using Wavelets to reject background in Dark Matter experiments

    Full text link
    A method based on wavelet techniques has been developed and applied to background rejection in the data of the IGEX dark matter experiment. The method is presented and described in some detail to show how it efficiently rejects events coming from noise and microphonism through a mathematical inspection of their recorded pulse shape. The result of the application of the method to the last data of IGEX is presented.Comment: 14 pages, 8 figures. Submitted to Astrop. Phy

    Mercury removal in wastewater by iron oxide nanoparticles

    Get PDF
    Mercury is one of the persistent pollutants in wastewater; it is becoming a severe environmental and public health problem, this is why nowadays its removal is an obligation. Iron oxide nanoparticles are receiving much attention due to their properties, such as: great biocompatibility, ease of separation, high relation of surface-area to volume, surface modifiability, reusability, excellent magnetic properties and relative low cost. In this experiment, Fe3O4 and γ-Fe2O3 nanoparticles were synthesized using iron salts and NaOH as precipitation agents, and Aloe Vera as stabilizing agent; then these nanoparticles were characterized by three different measurements: first, using a Zetasizer Nano ZS for their size estimation, secondly UV-visible spectroscopy which showed the existence of resonance of plasmon at λmax∼360 nm, and lastly by Scanning Electron Microscopy (SEM) to determine nanoparticles form. The results of this characterization showed that the obtained Iron oxides nanoparticles have a narrow size distribution (∼100nm). Mercury removal of 70% approximately was confirmed by atomic absorption spectroscopy measurements
    corecore