10,939 research outputs found

    On the volume functional of compact manifolds with boundary with constant scalar curvature

    Full text link
    We study the volume functional on the space of constant scalar curvature metrics with a prescribed boundary metric. We derive a sufficient and necessary condition for a metric to be a critical point, and show that the only domains in space forms, on which the standard metrics are critical points, are geodesic balls. In the zero scalar curvature case, assuming the boundary can be isometrically embedded in the Euclidean space as a compact strictly convex hypersurface, we show that the volume of a critical point is always no less than the Euclidean volume bounded by the isometric embedding of the boundary, and the two volumes are equal if and only if the critical point is isometric to a standard Euclidean ball. We also derive a second variation formula and apply it to show that, on Euclidean balls and ''small'' hyperbolic and spherical balls in dimensions 3 to 5, the standard space form metrics are indeed saddle points for the volume functional

    Journal Staff

    Get PDF
    Discoba (Excavata) is an ancient group of eukaryotes with great morphological and ecological diversity. Unlike the other major divisions of Discoba (Jakobida and Euglenozoa), little is known about the mitochondrial DNAs(mtDNAs) of Heterolobosea. We have assembled a complete mtDNA genome from the aggregating heterolobosean amoeba, Acrasis kona, which consists of a single circular highly AT-rich (83.3%) molecule of 51.5 kb. Unexpectedly, A. kona mtDNA is missing roughly 40% of the protein-coding genes and nearly half of the transfer RNAs found in the only other sequenced heterolobosean mtDNAs, those of Naegleria spp. Instead, over a quarter of A. kona mtDNA consists of novel open reading frames. Eleven of the 16 protein-coding genes missing from A. kona mtDNA were identified in its nuclear DNA and polyA RNA, and phylogenetic analyses indicate that at least 10 of these 11 putative nuclear-encoded mitochondrial (NcMt) proteins arose by direct transfer from the mitochondrion. Acrasis kona mtDNA also employs C-to-U type RNA editing, and 12 homologs of DYW-type pentatricopeptide repeat (PPR) proteins implicated in plant organellar RNA editing are found in A. kona nuclear DNA. A mapping of mitochondrial gene content onto a consensus phylogeny reveals a sporadic pattern of relative stasis and rampant gene loss in Discoba. Rampant loss occurred independently in the unique common lineage leading to Heterolobosea + Tsukubamonadida and later in the unique lineage leading to Acrasis. Meanwhile, mtDNA gene content appears to be remarkably stable in the Acrasis sister lineage leading to Naegleria and in their distant relatives Jakobida

    On a Localized Riemannian Penrose Inequality

    Full text link
    Consider a compact, orientable, three dimensional Riemannian manifold with boundary with nonnegative scalar curvature. Suppose its boundary is the disjoint union of two pieces: the horizon boundary and the outer boundary, where the horizon boundary consists of the unique closed minimal surfaces in the manifold and the outer boundary is metrically a round sphere. We obtain an inequality relating the area of the horizon boundary to the area and the total mean curvature of the outer boundary. Such a manifold may be thought as a region, surrounding the outermost apparent horizons of black holes, in a time-symmetric slice of a space-time in the context of general relativity. The inequality we establish has close ties with the Riemannian Penrose Inequality, proved by Huisken and Ilmanen, and by Bray.Comment: 16 page

    Dirichlet Boundary State in Linear Dilaton Background

    Get PDF
    Dirichlet-branes have emerged as important objects in studying nonperturbative string theory. It is important to generalize these objects to more general backgrounds other than the usual flat background. The simplest case is the linear dilaton condensate. The usual Dirichlet boundary condition violates conformal invariance in such a background. We show that by switching on a certain boundary interaction, conformal invariance is restored. An immediate application of this result is to two dimensional string theory.Comment: 6 pages, harvmac, some remarks are modified and one reference is added, formulas remain the sam

    Descriptions of membrane mechanics from microscopic and effective two-dimensional perspectives

    Full text link
    Mechanics of fluid membranes may be described in terms of the concepts of mechanical deformations and stresses, or in terms of mechanical free-energy functions. In this paper, each of the two descriptions is developed by viewing a membrane from two perspectives: a microscopic perspective, in which the membrane appears as a thin layer of finite thickness and with highly inhomogeneous material and force distributions in its transverse direction, and an effective, two-dimensional perspective, in which the membrane is treated as an infinitely thin surface, with effective material and mechanical properties. A connection between these two perspectives is then established. Moreover, the functional dependence of the variation in the mechanical free energy of the membrane on its mechanical deformations is first studied in the microscopic perspective. The result is then used to examine to what extent different, effective mechanical stresses and forces can be derived from a given, effective functional of the mechanical free energy.Comment: 37 pages, 3 figures, minor change

    New remarks on the linear constraint self-dual boson and Wess-Zumino terms

    Get PDF
    In this work we prove in a precise way that the soldering formalism can be applied to the Srivastava chiral boson (SCB), in contradiction with some results appearing in the literature. We have promoted a canonical transformation that shows directly that the SCB is composed of two Floreanini-Jackiw's particles with the same chirality which spectrum is a vacuum-like one. As another conflictive result we have proved that a Wess-Zumino term used in the literature consists of the scalar field, once again denying the assertion that the WZ term adds a new degree of freedom to the SCB theory in order to modify the physics of the system.Comment: 6 pages, Revtex. Final version to appear in Physical Review

    Low regularity solutions of two fifth-order KdV type equations

    Full text link
    The Kawahara and modified Kawahara equations are fifth-order KdV type equations and have been derived to model many physical phenomena such as gravity-capillary waves and magneto-sound propagation in plasmas. This paper establishes the local well-posedness of the initial-value problem for Kawahara equation in Hs(R)H^s({\mathbf R}) with s>74s>-\frac74 and the local well-posedness for the modified Kawahara equation in Hs(R)H^s({\mathbf R}) with s14s\ge-\frac14. To prove these results, we derive a fundamental estimate on dyadic blocks for the Kawahara equation through the [k;Z][k; Z] multiplier norm method of Tao \cite{Tao2001} and use this to obtain new bilinear and trilinear estimates in suitable Bourgain spaces.Comment: 17page

    Vesicles in solutions of hard rods

    Full text link
    The surface free energy of ideal hard rods near curved hard surfaces is determined to second order in curvature for surfaces of general shape. In accordance with previous results for spherical and cylindrical surfaces it is found that this quantity is non-analytical when one of the principal curvatures changes signs. This prohibits writing it in the common Helfrich form. It is shown that the non-analytical terms are the same for any aspect ratio of the rods. These results are used to find the equilibrium shape of vesicles immersed in solutions of rod-like (colloidal) particles. The presence of the particles induces a change in the equilibrium shape and to a shift of the prolate-oblate transition in the vesicle phase diagram, which are calculated within the framework of the spontaneous curvature model. As a consequence of the special form of the energy contribution due to the rods these changes cannot be accounted for by a simple rescaling of the elastic constants of the vesicle as for solutions of spherical colloids or polymers.Comment: 11 pages, 7 figures, submitted to Phys. Rev.
    corecore