4,758 research outputs found

    Operating an Acoustic Doppler Current Profiler aboard a Container Vessel

    Get PDF
    Since October 1992 an acoustic Doppler current profiler (ADCP) has been in near-continuous operation on board a 118-m-long container vessel, the container motor vessel Oleander, which operates on a weekly schedule between Port Elizabeth, New Jersey, and Hamilton, Bermuda. The ADCP collects information on currents from the surface to depths as great as 404 m depending on zooplankton concentrations, ship’s speed, sea state conditions, and the ship’s load factor. The southbound transits provide more and better data because the ship is loaded and rides deeper resulting in less bubble formation and entrainment underneath the vessel. Installation and operation of an ADCP on a cargo ship has involved a number of factors not typical of research vessels. Providing a data acquisition system that could operate on its own without assistance from the ship’s officers and that could recover from problems was the first issue. Isolating and removing electrical transients from the ship’s electrical system was extremely challenging. The presence of bubbles underneath the vessel due to variable draft and in heavy weather conditions significantly limits the performance of the ADCP. These difficulties not withstanding, the system is working well and is delivering good data on the southbound legs in most weather conditions and on the northbound legs under more favorable weather conditions. Starting in 1995, differential and attitudinal global positioning system enhancements have made significant improvements to navigational accuracy and ship’s heading data

    The phase transition in QCD with broken SU(2) flavour symmetry

    Get PDF
    We report the first investigation of the QCD transition temperature, T_c, for two flavours of staggered quarks with unequal masses at lattice spacings of 1/4T. On changing the u/d quark mass ratio in such a way that m(pi_0)^2/m(pi_+)^2 changes from 1 to 0.78, thus bracketing the physical value of this ratio, we find that T_c remains unchanged in units of both m_rho and Lambda_MSbar.Comment: 12 pages, 5 figure

    Two-Flavor Staggered Fermion Thermodynamics at N_t = 12

    Get PDF
    We present results of an ongoing study of the nature of the high temperature crossover in QCD with two light fermion flavors. These results are obtained with the conventional staggered fermion action at the smallest lattice spacing to date---approximately 0.1 fm. Of particular interest are a study of the temperature of the crossover a determination of the induced baryon charge and baryon susceptibility, the scalar susceptibility, and the chiral order parameter, used to test models of critical behavior associated with chiral symmetry restoration. From our new data and published results for N_t = 4, 6, and 8, we determine the QCD magnetic equation of state from the chiral order parameter using O(4) and mean field critical exponents and compare it with the corresponding equation of state obtained from an O(4) spin model and mean field theory. We also present a scaling analysis of the Polyakov loop, suggesting a temperature dependent ``constituent quark free energy.''Comment: LaTeX 25 pages, 15 Postscript figure

    Quarkonium mass splittings in three-flavor lattice QCD

    Full text link
    We report on calculations of the charmonium and bottomonium spectrum in lattice QCD. We use ensembles of gauge fields with three flavors of sea quarks, simulated with the asqtad improved action for staggered fermions. For the heavy quarks we employ the Fermilab interpretation of the clover action for Wilson fermions. These calculations provide a test of lattice QCD, including the theory of discretization errors for heavy quarks. We provide, therefore, a careful discussion of the results in light of the heavy-quark effective Lagrangian. By and large, we find that the computed results are in agreement with experiment, once parametric and discretization errors are taken into account.Comment: 21 pages, 17 figure

    Coupling and tuning of modal frequencies in direct current biased microelectromechanical systems arrays

    Get PDF
    Understanding the coupling of different modal frequencies and their tuning mechanisms has become essential to design multi-frequency MEMS devices. In this work, we fabricate a MEMS beam with fixed boundaries separated from two side electrodes and a bottom electrode. Subsequently, we perform experiments to obtain the frequency variation of in-plane and out-of-plane mechanical modes of the microbeam with respect to both DC bias and laser heating. We show that the frequencies of the two modes coincide at a certain DC bias, which in turn can also be varied due to temperature. Subsequently, we develop a theoretical model to predict the variation of the two modes and their coupling due to a variable gap between the microbeam and electrodes, initial tension, and fringing field coefficients. Finally, we discuss the influence of frequency tuning parameters in arrays of 3, 33, and 40 microbeams, respectively. It is also found that the frequency bandwidth of a microbeam array can be increased to as high as 25 kHz for a 40 microbeam array with a DC bias of 80 V

    Light pseudoscalar decay constants, quark masses, and low energy constants from three-flavor lattice QCD

    Full text link
    As part of our program of lattice simulations of three flavor QCD with improved staggered quarks, we have calculated pseudoscalar meson masses and decay constants for a range of valence quark masses and sea quark masses on lattices with lattice spacings of about 0.125 fm and 0.09 fm. We fit the lattice data to forms computed with staggered chiral perturbation theory. Our results provide a sensitive test of the lattice simulations, and especially of the chiral behavior, including the effects of chiral logarithms. We find: f_\pi=129.5(0.9)(3.5)MeV, f_K=156.6(1.0)(3.6)MeV, and f_K/f_\pi=1.210(4)(13), where the errors are statistical and systematic. Following a recent paper by Marciano, our value of f_K/f_\pi implies |V_{us}|=0.2219(26). Further, we obtain m_u/m_d= 0.43(0)(1)(8), where the errors are from statistics, simulation systematics, and electromagnetic effects, respectively. The data can also be used to determine several of the constants of the low energy effective Lagrangian: in particular we find 2L_8-L_5=-0.2(1)(2) 10^{-3} at chiral scale m_\eta. This provides an alternative (though not independent) way of estimating m_u; 2L_8-L_5 is far outside the range that would allow m_u=0. Results for m_s^\msbar, \hat m^\msbar, and m_s/\hat m can be obtained from the same lattice data and chiral fits, and have been presented previously in joint work with the HPQCD and UKQCD collaborations. Using the perturbative mass renormalization reported in that work, we obtain m_u^\msbar=1.7(0)(1)(2)(2)MeV and m_d^\msbar=3.9(0)(1)(4)(2)MeV at scale 2 GeV, with errors from statistics, simulation, perturbation theory, and electromagnetic effects, respectively.Comment: 86 pages, 22 figures. v3: Remarks about m_u=0 and the strong CP problem modified; reference added. Figs 5--8 modified for clarity. Version to be published in Phys. Rev. D. v2: Expanded discussion of finite volume effects, normalization in Table I fixed, typos and minor errors correcte

    String amplitudes in arbitrary dimensions

    Full text link
    We calculate gravitational dressed tachyon correlators in non critcal dimensions. The 2D gravity part of our theory is constrained to constant curvature. Then scaling dimensions of gravitational dressed vertex operators are equal to their bare conformal dimensions. Considering the model as d+2 dimensional critical string we calculate poles of generalized Shapiro-Virasoro amplitudes.Comment: 14 page

    Continuous-time quantum walk on integer lattices and homogeneous trees

    Full text link
    This paper is concerned with the continuous-time quantum walk on Z, Z^d, and infinite homogeneous trees. By using the generating function method, we compute the limit of the average probability distribution for the general isotropic walk on Z, and for nearest-neighbor walks on Z^d and infinite homogeneous trees. In addition, we compute the asymptotic approximation for the probability of the return to zero at time t in all these cases.Comment: The journal version (save for formatting); 19 page

    Determination of Inter-Phase Line Tension in Langmuir Films

    Get PDF
    A Langmuir film is a molecularly thin film on the surface of a fluid; we study the evolution of a Langmuir film with two co-existing fluid phases driven by an inter-phase line tension and damped by the viscous drag of the underlying subfluid. Experimentally, we study an 8CB Langmuir film via digitally-imaged Brewster Angle Microscopy (BAM) in a four-roll mill setup which applies a transient strain and images the response. When a compact domain is stretched by the imposed strain, it first assumes a bola shape with two tear-drop shaped reservoirs connected by a thin tether which then slowly relaxes to a circular domain which minimizes the interfacial energy of the system. We process the digital images of the experiment to extract the domain shapes. We then use one of these shapes as an initial condition for the numerical solution of a boundary-integral model of the underlying hydrodynamics and compare the subsequent images of the experiment to the numerical simulation. The numerical evolutions first verify that our hydrodynamical model can reproduce the observed dynamics. They also allow us to deduce the magnitude of the line tension in the system, often to within 1%. We find line tensions in the range of 200-600 pN; we hypothesize that this variation is due to differences in the layer depths of the 8CB fluid phases.Comment: See (http://www.math.hmc.edu/~ajb/bola/) for related movie

    On the temperature dependence of correlation functions in the space like direction in hot QCD

    Full text link
    We study the temperature dependence of quark antiquark correlations in the space like direction. In particular, we predict the temperature dependence of space like Bethe-Salpeter amplitudes using recent Lattice gauge data for the space like string potential. We also investigate the effect of the space like string potential on the screening mass and discuss possible corrections which may arise when working with point sources.Comment: 15 pages 8 figures (not included, will be sent on request), (SUNY-NTG-94-3
    corecore