3,065 research outputs found
Growth models, random matrices and Painleve transcendents
The Hammersley process relates to the statistical properties of the maximum
length of all up/right paths connecting random points of a given density in the
unit square from (0,0) to (1,1). This process can also be interpreted in terms
of the height of the polynuclear growth model, or the length of the longest
increasing subsequence in a random permutation. The cumulative distribution of
the longest path length can be written in terms of an average over the unitary
group. Versions of the Hammersley process in which the points are constrained
to have certain symmetries of the square allow similar formulas. The derivation
of these formulas is reviewed. Generalizing the original model to have point
sources along two boundaries of the square, and appropriately scaling the
parameters gives a model in the KPZ universality class. Following works of Baik
and Rains, and Pr\"ahofer and Spohn, we review the calculation of the scaled
cumulative distribution, in which a particular Painlev\'e II transcendent plays
a prominent role.Comment: 27 pages, 5 figure
Increasing subsequences and the hard-to-soft edge transition in matrix ensembles
Our interest is in the cumulative probabilities Pr(L(t) \le l) for the
maximum length of increasing subsequences in Poissonized ensembles of random
permutations, random fixed point free involutions and reversed random fixed
point free involutions. It is shown that these probabilities are equal to the
hard edge gap probability for matrix ensembles with unitary, orthogonal and
symplectic symmetry respectively. The gap probabilities can be written as a sum
over correlations for certain determinantal point processes. From these
expressions a proof can be given that the limiting form of Pr(L(t) \le l) in
the three cases is equal to the soft edge gap probability for matrix ensembles
with unitary, orthogonal and symplectic symmetry respectively, thereby
reclaiming theorems due to Baik-Deift-Johansson and Baik-Rains.Comment: LaTeX, 19 page
Particles in a magnetic field and plasma analogies: doubly periodic boundary conditions
The -particle free fermion state for quantum particles in the plane
subject to a perpendicular magnetic field, and with doubly periodic boundary
conditions, is written in a product form. The absolute value of this is used to
formulate an exactly solvable one-component plasma model, and further motivates
the formulation of an exactly solvable two-species Coulomb gas. The large
expansion of the free energy of both these models exhibits the same O(1) term.
On the basis of a relationship to the Gaussian free field, this term is
predicted to be universal for conductive Coulomb systems in doubly periodic
boundary conditions.Comment: 12 page
Analytic solutions of the 1D finite coupling delta function Bose gas
An intensive study for both the weak coupling and strong coupling limits of
the ground state properties of this classic system is presented. Detailed
results for specific values of finite are given and from them results for
general are determined. We focus on the density matrix and concomitantly
its Fourier transform, the occupation numbers, along with the pair correlation
function and concomitantly its Fourier transform, the structure factor. These
are the signature quantities of the Bose gas. One specific result is that for
weak coupling a rational polynomial structure holds despite the transcendental
nature of the Bethe equations. All these new results are predicated on the
Bethe ansatz and are built upon the seminal works of the past.Comment: 23 pages, 0 figures, uses rotate.sty. A few lines added. Accepted by
Phys. Rev.
Semi-classical Laguerre polynomials and a third order discrete integrable equation
A semi-discrete Lax pair formed from the differential system and recurrence
relation for semi-classical orthogonal polynomials, leads to a discrete
integrable equation for a specific semi-classical orthogonal polynomial weight.
The main example we use is a semi-classical Laguerre weight to derive a third
order difference equation with a corresponding Lax pair.Comment: 11 page
Finite N Fluctuation Formulas for Random Matrices
For the Gaussian and Laguerre random matrix ensembles, the probability
density function (p.d.f.) for the linear statistic
is computed exactly and shown to satisfy a central limit theorem as . For the circular random matrix ensemble the p.d.f.'s for the linear
statistics and are calculated exactly by using a constant term identity
from the theory of the Selberg integral, and are also shown to satisfy a
central limit theorem as .Comment: LaTeX 2.09, 11 pages + 3 eps figs (needs epsf.sty
Antibiotic Treatment Ameliorates the Impact of Stony Coral Tissue Loss Disease (SCTLD) on Coral Communities
Stony coral tissue loss disease has spread widely in the Caribbean and causes substantial changes to coral community composition because of its broad host range and high fatality rate. To reduce SCTLD impacts, intervention programs throughout the region have divers treating corals with antibiotics. We assessed the effect of antibiotic treatment in the British Virgin Islands by comparing coral communities at 13 treated sites to those at 13 untreated sites. The prevalence of white syndromes (assumed to be primarily SCTLD), the severity of white syndrome lesions, partial colony mortality and complete colony mortality all showed a qualitative pattern consistent with benefits of treatment: they were reduced at treated sites for species highly susceptible to SCTLD. In contrast, the prevalence and severity of lesions from other diseases, and other causes of tissue loss, were all unrelated to treatment. Re-ordering of rank abundance at the community-level was also consistent with a positive effect of treatment because rare, highly SCTLD-susceptible species increased slightly in relative cover at treated sites. Although there was limited statistical support for these responses individually, collectively the overall pattern of results indicates a modest beneficial effect of the intervention program for highly susceptible species. Diver-based intervention programs using antibiotics may thus be a viable part of management plans for STLD at the epidemic stage
Correlations in two-component log-gas systems
A systematic study of the properties of particle and charge correlation
functions in the two-dimensional Coulomb gas confined to a one-dimensional
domain is undertaken. Two versions of this system are considered: one in which
the positive and negative charges are constrained to alternate in sign along
the line, and the other where there is no charge ordering constraint. Both
systems undergo a zero-density Kosterlitz-Thouless type transition as the
dimensionless coupling is varied through . In
the charge ordered system we use a perturbation technique to establish an
decay of the two-body correlations in the high temperature limit.
For , the low-fugacity expansion of the asymptotic
charge-charge correlation can be resummed to all orders in the fugacity. The
resummation leads to the Kosterlitz renormalization equations.Comment: 39 pages, 5 figures not included, Latex, to appear J. Stat. Phys.
Shortened version of abstract belo
Boundary conditions associated with the Painlev\'e III' and V evaluations of some random matrix averages
In a previous work a random matrix average for the Laguerre unitary ensemble,
generalising the generating function for the probability that an interval at the hard edge contains eigenvalues, was evaluated in terms of
a Painlev\'e V transcendent in -form. However the boundary conditions
for the corresponding differential equation were not specified for the full
parameter space. Here this task is accomplished in general, and the obtained
functional form is compared against the most general small behaviour of
the Painlev\'e V equation in -form known from the work of Jimbo. An
analogous study is carried out for the the hard edge scaling limit of the
random matrix average, which we have previously evaluated in terms of a
Painlev\'e \IIId transcendent in -form. An application of the latter
result is given to the rapid evaluation of a Hankel determinant appearing in a
recent work of Conrey, Rubinstein and Snaith relating to the derivative of the
Riemann zeta function
Eigenvalue Separation in Some Random Matrix Models
The eigenvalue density for members of the Gaussian orthogonal and unitary
ensembles follows the Wigner semi-circle law. If the Gaussian entries are all
shifted by a constant amount c/Sqrt(2N), where N is the size of the matrix, in
the large N limit a single eigenvalue will separate from the support of the
Wigner semi-circle provided c > 1. In this study, using an asymptotic analysis
of the secular equation for the eigenvalue condition, we compare this effect to
analogous effects occurring in general variance Wishart matrices and matrices
from the shifted mean chiral ensemble. We undertake an analogous comparative
study of eigenvalue separation properties when the size of the matrices are
fixed and c goes to infinity, and higher rank analogues of this setting. This
is done using exact expressions for eigenvalue probability densities in terms
of generalized hypergeometric functions, and using the interpretation of the
latter as a Green function in the Dyson Brownian motion model. For the shifted
mean Gaussian unitary ensemble and its analogues an alternative approach is to
use exact expressions for the correlation functions in terms of classical
orthogonal polynomials and associated multiple generalizations. By using these
exact expressions to compute and plot the eigenvalue density, illustrations of
the various eigenvalue separation effects are obtained.Comment: 25 pages, 9 figures include
- …