5,671 research outputs found
Thermal coefficient of delay for various coaxial and fiber-optic cables
Data are presented on the thermal coefficient of delay for various coaxial and fiber optic cables, as measured by the Frequency and Timing Systems Engineering Group and the Time and Frequency Systems Research Group. The measured pressure coefficient of delay is also given for the air-dielectric coaxial cables. A description of the measurement method and a description of each of the cables and its use at JPL and in the DSN are included. An improvement in frequency and phase stability by a factor of ten is possible with the use of fiber optics
Local Current Distribution and "Hot Spots" in the Integer Quantum Hall Regime
In a recent experiment, the local current distribution of a two-dimensional
electron gas in the quantum Hall regime was probed by measuring the variation
of the conductance due to local gating. The main experimental finding was the
existence of "hot spots", i.e. regions with high degree of sensitivity to local
gating, whose density increases as one approaches the quantum Hall transition.
However, the direct connection between these "hot spots" and regions of high
current flow is not clear. Here, based on a recent model for the quantum Hall
transition consisting of a mixture of perfect and quantum links, the relation
between the "hot spots" and the current distribution in the sample has been
investigated. The model reproduces the observed dependence of the number and
sizes of "hot spots" on the filling factor. It is further demonstrated that
these "hot spots" are not located in regions where most of the current flows,
but rather, in places where the currents flow both when injected from the left
or from the right. A quantitative measure, the harmonic mean of these currents
is introduced and correlates very well with the "hot spots" positions
Poynting vector, energy density and energy velocity in anomalous dispersion medium
The Poynting vector, energy density and energy velocity of light pulses
propagating in anomalous dispersion medium (used in WKD-like experiments) are
calculated. Results show that a negative energy density in the medium
propagates along opposite of incident direction with such a velocity similar to
the negative group velocity while the direction of the Poynting vector is
positive. In other words, one might say that a positive energy density in the
medium would propagate along the positive direction with a speed having
approximately the absolute valueof the group velocity. We further point out
that neither energy velocity nor group velocity is a good concept to describe
the propagation process of light pulse inside the medium in WKD experiment
owing to the strong accumulation and dissipation effects.Comment: 6 page
Ramping fermions in optical lattices across a Feshbach resonance
We study the properties of ultracold Fermi gases in a three-dimensional
optical lattice when crossing a Feshbach resonance. By using a zero-temperature
formalism, we show that three-body processes are enhanced in a lattice system
in comparison to the continuum case. This poses one possible explanation for
the short molecule lifetimes found when decreasing the magnetic field across a
Feshbach resonance. Effects of finite temperatures on the molecule formation
rates are also discussed by computing the fraction of double-occupied sites.
Our results show that current experiments are performed at temperatures
considerably higher than expected: lower temperatures are required for
fermionic systems to be used to simulate quantum Hamiltonians. In addition, by
relating the double occupancy of the lattice to the temperature, we provide a
means for thermometry in fermionic lattice systems, previously not accessible
experimentally. The effects of ramping a filled lowest band across a Feshbach
resonance when increasing the magnetic field are also discussed: fermions are
lifted into higher bands due to entanglement of Bloch states, in good agreement
with recent experiments.Comment: 9 pages, 7 figure
Local and global properties of conformally flat initial data for black hole collisions
We study physical properties of conformal initial value data for single and
binary black hole configurations obtained using conformal-imaging and
conformal-puncture methods. We investigate how the total mass M_tot of a
dataset with two black holes depends on the configuration of linear or angular
momentum and separation of the holes. The asymptotic behavior of M_tot with
increasing separation allows us to make conclusions about an unphysical
``junk'' gravitation field introduced in the solutions by the conformal
approaches. We also calculate the spatial distribution of scalar invariants of
the Riemann tensor which determine the gravitational tidal forces. For single
black hole configurations, these are compared to known analytical solutions.
Spatial distribution of the invariants allows us to make certain conclusions
about the local distribution of the additional field in the numerical datasets
Paired state in an integrable spin-1 boson model
An exactly solvable model describing the low density limit of the spin-1
bosons in a one-dimensional optical lattice is proposed. The exact Bethe ansatz
solution shows that the low energy physics of this system is described by a
quantum liquid of spin singlet bound pairs. Motivated by the exact results, a
mean-field approach to the corresponding three-dimensional system is carried
out. Condensation of singlet pairs and coexistence with ordinary Bose-Einstein
condensation are predicted.Comment: 6 pages, 1 figure, Revised versio
- …
