11,149 research outputs found

    Combinatorial point for higher spin loop models

    Full text link
    Integrable loop models associated with higher representations (spin k/2) of U_q(sl(2)) are investigated at the point q=-e^{i\pi/(k+2)}. The ground state eigenvalue and eigenvectors are described. Introducing inhomogeneities into the models allows to derive a sum rule for the ground state entries.Comment: latest version adds some reference

    Characterizing topological order by studying the ground states of an infinite cylinder

    Full text link
    Given a microscopic lattice Hamiltonian for a topologically ordered phase, we describe a tensor network approach to characterize its emergent anyon model and, in a chiral phase, also its gapless edge theory. First, a tensor network representation of a complete, orthonormal set of ground states on a cylinder of infinite length and finite width is obtained through numerical optimization. Each of these ground states is argued to have a different anyonic flux threading through the cylinder. In a chiral phase, the entanglement spectrum of each ground state is seen to reveal a different sector of the corresponding gapless edge theory. A quasi-orthogonal basis on the torus is then produced by chopping off and reconnecting the tensor network representation on the cylinder. Elaborating on the recent proposal of [Y. Zhang et al. Phys. Rev. B 85, 235151 (2012)], a rotation on the torus yields an alternative basis of ground states and, through the computation of overlaps between bases, the modular matrices S and U (containing the mutual and self statistics of the different anyon species) are extracted. As an application, we study the hard-core boson Haldane model by using the two-dimensional density matrix renormalization group. A thorough characterization of the universal properties of this lattice model, both in the bulk and at the edge, unambiguously shows that its ground space realizes the \nu=1/2 bosonic Laughlin state.Comment: 10 pages, 11 figure

    The solution of the quantum A1A_1 T-system for arbitrary boundary

    Full text link
    We solve the quantum version of the A1A_1 TT-system by use of quantum networks. The system is interpreted as a particular set of mutations of a suitable (infinite-rank) quantum cluster algebra, and Laurent positivity follows from our solution. As an application we re-derive the corresponding quantum network solution to the quantum A1A_1 QQ-system and generalize it to the fully non-commutative case. We give the relation between the quantum TT-system and the quantum lattice Liouville equation, which is the quantized YY-system.Comment: 24 pages, 18 figure

    The Razumov-Stroganov conjecture: Stochastic processes, loops and combinatorics

    Full text link
    A fascinating conjectural connection between statistical mechanics and combinatorics has in the past five years led to the publication of a number of papers in various areas, including stochastic processes, solvable lattice models and supersymmetry. This connection, known as the Razumov-Stroganov conjecture, expresses eigenstates of physical systems in terms of objects known from combinatorics, which is the mathematical theory of counting. This note intends to explain this connection in light of the recent papers by Zinn-Justin and Di Francesco.Comment: 6 pages, 4 figures, JSTAT News & Perspective

    Non-local scaling operators with entanglement renormalization

    Get PDF
    The multi-scale entanglement renormalization ansatz (MERA) can be used, in its scale invariant version, to describe the ground state of a lattice system at a quantum critical point. From the scale invariant MERA one can determine the local scaling operators of the model. Here we show that, in the presence of a global symmetry G\mathcal{G}, it is also possible to determine a class of non-local scaling operators. Each operator consist, for a given group element gGg\in\mathcal{G}, of a semi-infinite string \tGamma_g with a local operator ϕ\phi attached to its open end. In the case of the quantum Ising model, G=Z2\mathcal{G}= \mathbb{Z}_2, they correspond to the disorder operator μ\mu, the fermionic operators ψ\psi and ψˉ\bar{\psi}, and all their descendants. Together with the local scaling operators identity I\mathbb{I}, spin σ\sigma and energy ϵ\epsilon, the fermionic and disorder scaling operators ψ\psi, ψˉ\bar{\psi} and μ\mu are the complete list of primary fields of the Ising CFT. Thefore the scale invariant MERA allows us to characterize all the conformal towers of this CFT.Comment: 4 pages, 4 figures. Revised versio

    Integrability of graph combinatorics via random walks and heaps of dimers

    Full text link
    We investigate the integrability of the discrete non-linear equation governing the dependence on geodesic distance of planar graphs with inner vertices of even valences. This equation follows from a bijection between graphs and blossom trees and is expressed in terms of generating functions for random walks. We construct explicitly an infinite set of conserved quantities for this equation, also involving suitable combinations of random walk generating functions. The proof of their conservation, i.e. their eventual independence on the geodesic distance, relies on the connection between random walks and heaps of dimers. The values of the conserved quantities are identified with generating functions for graphs with fixed numbers of external legs. Alternative equivalent choices for the set of conserved quantities are also discussed and some applications are presented.Comment: 38 pages, 15 figures, uses epsf, lanlmac and hyperbasic

    Algorithms for entanglement renormalization

    Get PDF
    We describe an iterative method to optimize the multi-scale entanglement renormalization ansatz (MERA) for the low-energy subspace of local Hamiltonians on a D-dimensional lattice. For translation invariant systems the cost of this optimization is logarithmic in the linear system size. Specialized algorithms for the treatment of infinite systems are also described. Benchmark simulation results are presented for a variety of 1D systems, namely Ising, Potts, XX and Heisenberg models. The potential to compute expected values of local observables, energy gaps and correlators is investigated.Comment: 23 pages, 28 figure

    Chern-Simons matrix models and Stieltjes-Wigert polynomials

    Get PDF
    Employing the random matrix formulation of Chern-Simons theory on Seifert manifolds, we show how the Stieltjes-Wigert orthogonal polynomials are useful in exact computations in Chern-Simons matrix models. We construct a biorthogonal extension of the Stieltjes-Wigert polynomials, not available in the literature, necessary to study Chern-Simons matrix models when the geometry is a lens space. We also discuss several other results based on the properties of the polynomials: the equivalence between the Stieltjes-Wigert matrix model and the discrete model that appears in q-2D Yang-Mills and the relationship with Rogers-Szego polynomials and the corresponding equivalence with an unitary matrix model. Finally, we also give a detailed proof of a result that relates quantum dimensions with averages of Schur polynomials in the Stieltjes-Wigert ensemble.Comment: 25 pages, AMS-LaTe

    Thermopower in the Coulomb blockade regime for Laughlin quantum dots

    Full text link
    Using the conformal field theory partition function of a Coulomb-blockaded quantum dot, constructed by two quantum point contacts in a Laughlin quantum Hall bar, we derive the finite-temperature thermodynamic expression for the thermopower in the linear-response regime. The low-temperature results for the thermopower are compared to those for the conductance and their capability to reveal the structure of the single-electron spectrum in the quantum dot is analyzed.Comment: 11 pages, 3 figures, Proceedings of the 10-th International Workshop "Lie Theory and Its Applications in Physics", 17-23 June 2013, Varna, Bulgari
    corecore