207 research outputs found

    169 Exercise and respiratory muscle function in patients with cystic fibrosis

    Get PDF

    A frictionless microswimmer

    Get PDF
    We investigate the self-locomotion of an elongated microswimmer by virtue of the unidirectional tangential surface treadmilling. We show that the propulsion could be almost frictionless, as the microswimmer is propelled forward with the speed of the backward surface motion, i.e. it moves throughout an almost quiescent fluid. We investigate this swimming technique using the special spheroidal coordinates and also find an explicit closed-form optimal solution for a two-dimensional treadmiler via complex-variable techniques.Comment: 6 pages, 4 figure

    Scattering of electromagnetic waves by many small perfectly conducting or impedance bodies

    Get PDF
    A theory of electromagnetic (EM) wave scattering by many small particles of an arbitrary shape is developed. The particles are perfectly conducting or impedance. For a small impedance particle of an arbitrary shape, an explicit analytical formula is derived for the scattering amplitude. The formula holds as a → 0, where a is a characteristic size of the small particle and the wavelength is arbitrary but fixed. The scattering amplitude for a small impedance particle is shown to be proportional to a2−Îș, where Îș ∈ [0,1) is a parameter which can be chosen by an experimenter as he/she wants. The boundary impedance of a small particle is assumed to be of the form ζ = ha−Îș, where h = const, Reh ≄ 0. The scattering amplitude for a small perfectly conducting particle is proportional to a3, and it is much smaller than that for the small impedance particle. The many-body scattering problem is solved under the physical assumptions a â‰Ș d â‰Ș λ, where d is the minimal distance between neighboring particles and λ is the wavelength. The distribution law for the small impedance particles is N(∆) ∌ 1/a2−Îș∆ N(x)dx as a → 0. Here, N(x) ≄ 0 is an arbitrary continuous function that can be chosen by the experimenter and N(∆) is the number of particles in an arbitrary sub-domain ∆. It is proved that the EM field in the medium where many small particles, impedance or perfectly conducting, are distributed, has a limit, as a → 0 and a differential equation is derived for the limiting field. On this basis, a recipe is given for creating materials with a desired refraction coefficient by embedding many small impedance particles into a given material. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4929965

    Computational science and re-discovery: open-source implementations of ellipsoidal harmonics for problems in potential theory

    Full text link
    We present two open-source (BSD) implementations of ellipsoidal harmonic expansions for solving problems of potential theory using separation of variables. Ellipsoidal harmonics are used surprisingly infrequently, considering their substantial value for problems ranging in scale from molecules to the entire solar system. In this article, we suggest two possible reasons for the paucity relative to spherical harmonics. The first is essentially historical---ellipsoidal harmonics developed during the late 19th century and early 20th, when it was found that only the lowest-order harmonics are expressible in closed form. Each higher-order term requires the solution of an eigenvalue problem, and tedious manual computation seems to have discouraged applications and theoretical studies. The second explanation is practical: even with modern computers and accurate eigenvalue algorithms, expansions in ellipsoidal harmonics are significantly more challenging to compute than those in Cartesian or spherical coordinates. The present implementations reduce the "barrier to entry" by providing an easy and free way for the community to begin using ellipsoidal harmonics in actual research. We demonstrate our implementation using the specific and physiologically crucial problem of how charged proteins interact with their environment, and ask: what other analytical tools await re-discovery in an era of inexpensive computation?Comment: 25 pages, 3 figure

    Damage Accumulation in Cyclically-Loaded Glass-Ceramic Matrix Composites Monitored by Acoustic Emission

    Get PDF
    Barium osumilite (BMAS) ceramic matrix composites reinforced with SiC-Tyranno fibers are tested in a cyclic loading protocol. Broadband acoustic emission (AE) sensors are used for monitoring the occurrence of different possible damage mechanisms. Improved use of AE indices is proposed by excluding low-severity signals based on waveform parameters, rather than only threshold criteria. The application of such improvements enhances the accuracy of the indices as accumulated damage descriptors. RA-value, duration, and signal energy follow the extension cycles indicating moments of maximum or minimum strain, while the frequency content of the AE signals proves very sensitive to the pull-out mechanism

    The Unique Determination of Neuronal Currents in the Brain via Magnetoencephalography

    Full text link
    The problem of determining the neuronal current inside the brain from measurements of the induced magnetic field outside the head is discussed under the assumption that the space occupied by the brain is approximately spherical. By inverting the Geselowitz equation, the part of the current which can be reconstructed from the measurements is precisely determined. This actually consists of only certain moments of one of the two functions specifying the tangential part of the current. The other function specifying the tangential part of the current as well as the radial part of the current are completely arbitrary. However, it is also shown that with the assumption of energy minimization, the current can be reconstructed uniquely. A numerical implementation of this unique reconstruction is also presented

    Inverse Modeling for MEG/EEG data

    Full text link
    We provide an overview of the state-of-the-art for mathematical methods that are used to reconstruct brain activity from neurophysiological data. After a brief introduction on the mathematics of the forward problem, we discuss standard and recently proposed regularization methods, as well as Monte Carlo techniques for Bayesian inference. We classify the inverse methods based on the underlying source model, and discuss advantages and disadvantages. Finally we describe an application to the pre-surgical evaluation of epileptic patients.Comment: 15 pages, 1 figur
    • 

    corecore