2,584 research outputs found
Effect of combined addition of graphene oxide and citric acid on superconducting properties of MgB₂Effect of combined addition of graphene oxide and citric acid on superconducting properties of MgB₂
In the present work, polycrystalline samples with compositions MgB₂ + 3wt% GO + x wt% C₆H₈O₇ (x = 0, 5 and 10) have been synthesized to study the effect of combined addition of graphene oxide (GO) and citric acid (C₆H₈O₇) on superconducting properties of MgB₂. X-ray diffraction studies show the formation of hexagonal crystal structure of MgB₂ with space group P6/mmm in all synthesized samples. We observe that the addition of GO in the sample improves the grain connectivity and consequently enhances the critical current density significantly with no substantial change in Tc. However for this sample, there is no significant improvement in Hc2 and Hirr. With the combined addition of GO and citric acid, the JC(H), Hc2 and Hirr are observed to improve substantially as compared to the pristine MgB₂ and GO added MgB₂ samples. For example JC(10 K, 5 T) of sample x = 10 has improved by a factor of ∼15 as compared to pure MgB₂ sample and by a factor of ∼5.5 as compared to the x = 0 sample. Furthermore, Hc2(0) for x = 10 sample has enhanced by 13 T as compared to pure MgB₂ while it has increased by ∼10 T in comparison to x = 0 sample. Enhanced flux pinning has been observed with the combined addition of GO and citric acid
Anomalous Self-Energy Effects of the B_1g Phonon in Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 Films
In Raman spectra of cuprate superconductors the gap shows up both directly,
via a redistribution of the electronic background, the so-called "2Delta
peaks", and indirectly, e.g. via the renormalization of phononic excitations.
We use a model that allows us to study the redistribution and the related
phonon self-energy effects simultaneously. We apply this model to the B_1g
phonon of Y_{1-x}(Pr,Ca)_xBa_2Cu_3O_7 films, where Pr or Ca substitution
enables us to investigate under- and overdoped samples. While various
self-energy effects can be explained by the strength and energy of the 2\Delta
peaks, anomalies remain. We discuss possible origins of these anomalies.Comment: 6 pages including 4 figure
The STAR Photon Multiplicity Detector
Details concerning the design, fabrication and performance of STAR Photon
Multiplicity Detector (PMD) are presented. The PMD will cover the forward
region, within the pseudorapidity range 2.3--3.5, behind the forward time
projection chamber. It will measure the spatial distribution of photons in
order to study collective flow, fluctuation and chiral symmetry restoration.Comment: 15 pages, including 11 figures; to appear in a special NIM volume
dedicated to the accelerator and detectors at RHI
Non-zero temperature transport near quantum critical points
We describe the nature of charge transport at non-zero temperatures ()
above the two-dimensional () superfluid-insulator quantum critical point. We
argue that the transport is characterized by inelastic collisions among
thermally excited carriers at a rate of order . This implies that
the transport at frequencies is in the hydrodynamic,
collision-dominated (or `incoherent') regime, while is
the collisionless (or `phase-coherent') regime. The conductivity is argued to
be times a non-trivial universal scaling function of , and not independent of , as has been previously
claimed, or implicitly assumed. The experimentally measured d.c. conductivity
is the hydrodynamic limit of this function, and is a
universal number times , even though the transport is incoherent.
Previous work determined the conductivity by incorrectly assuming it was also
equal to the collisionless limit of the scaling
function, which actually describes phase-coherent transport with a conductivity
given by a different universal number times . We provide the first
computation of the universal d.c. conductivity in a disorder-free boson model,
along with explicit crossover functions, using a quantum Boltzmann equation and
an expansion in . The case of spin transport near quantum
critical points in antiferromagnets is also discussed. Similar ideas should
apply to the transitions in quantum Hall systems and to metal-insulator
transitions. We suggest experimental tests of our picture and speculate on a
new route to self-duality at two-dimensional quantum critical points.Comment: Feedback incorporated into numerous clarifying remarks; additional
appendix discusses relationship to transport in dissipative quantum mechanics
and quantum Hall edge state tunnelling problems, stimulated by discussions
with E. Fradki
Pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV
We present a systematic analysis of two-pion interferometry in Au+Au collisions at sqrt[sNN]=200GeV using the STAR detector at Relativistic Heavy Ion Collider. We extract the Hanbury-Brown and Twiss radii and study their multiplicity, transverse momentum, and azimuthal angle dependence. The Gaussianness of the correlation function is studied. Estimates of the geometrical and dynamical structure of the freeze-out source are extracted by fits with blast-wave parametrizations. The expansion of the source and its relation with the initial energy density distribution is studied
Pion interferometry in Au+Au collisions at = 200 GeV
We present a systematic analysis of two-pion interferometry in Au+Au
collisions at = 200 GeV using the STAR detector at RHIC. We
extract the HBT radii and study their multiplicity, transverse momentum, and
azimuthal angle dependence. The Gaussianess of the correlation function is
studied. Estimates of the geometrical and dynamical structure of the freeze-out
source are extracted by fits with blast wave parameterizations. The expansion
of the source and its relation with the initial energy density distribution is
studied.Comment: 21 pages, 30 figures. As published in Physics Review
Production of Pairs Accompanied by Nuclear Dissociation in Ultra-Peripheral Heavy Ion Collision
We present the first data on pair production accompanied by nuclear
breakup in ultra-peripheral gold-gold collisions at a center of mass energy of
200 GeV per nucleon pair. The nuclear breakup requirement selects events at
small impact parameters, where higher-order corrections to the pair production
cross section should be enhanced. We compare the pair kinematic distributions
with two calculations: one based on the equivalent photon approximation, and
the other using lowest-order quantum electrodynamics (QED); the latter includes
the photon virtuality. The cross section, pair mass, rapidity and angular
distributions are in good agreement with both calculations. The pair transverse
momentum, , spectrum agrees with the QED calculation, but not with the
equivalent photon approach. We set limits on higher-order contributions to the
cross section. The and spectra are similar, with no evidence
for interference effects due to higher-order diagrams.Comment: 6 pages with 3 figures Slightly modified version that will appear in
Phys. Rev.
Azimuthally sensitive Hanbury Brown-Twiss interferometry in Au+Au collisions at sqrt(s_{NN}) = 200 GeV
We present the results of a systematic study of the shape of the pion
distribution in coordinate space at freeze-out in Au+Au collisions at RHIC
using two-pion Hanbury Brown-Twiss (HBT) interferometry. Oscillations of the
extracted HBT radii vs. emission angle indicate sources elongated perpendicular
to the reaction plane. The results indicate that the pressure and expansion
time of the collision system are not sufficient to completely quench its
initial shape.Comment: 6 pages, 4 figures, published versio
Transverse-momentum dependent modification of dynamic texture in central Au+Au collisions at sqrt(S_NN)=200 GeV
Correlations in the hadron distributions produced in relativistic Au+Au
collisions are studied in the discrete wavelet expansion method. The analysis
is performed in the space of pseudorapidity (|eta| < 1) and azimuth (full 2 pi)
in bins of transverse momentum (p_t) from 0.14 < p_t < 2.1 GeV/c. In peripheral
Au+Au collisions a correlation structure ascribed to mini-jet fragmentation is
observed. It evolves with collision centrality and p_t in a way not seen before
which suggests strong dissipation of minijet fragmentation in the
longitudinally-expanding medium.Comment: 6 pages, 3 figure, accepted as Phys.Rev.C Rapid Communication. This
version fixes journal style issue
- …