428 research outputs found

    Computational Screening of Tip and Stalk Cell Behavior Proposes a Role for Apelin Signaling in Sprout Progression

    Full text link
    Angiogenesis involves the formation of new blood vessels by sprouting or splitting of existing blood vessels. During sprouting, a highly motile type of endothelial cell, called the tip cell, migrates from the blood vessels followed by stalk cells, an endothelial cell type that forms the body of the sprout. To get more insight into how tip cells contribute to angiogenesis, we extended an existing computational model of vascular network formation based on the cellular Potts model with tip and stalk differentiation, without making a priori assumptions about the differences between tip cells and stalk cells. To predict potential differences, we looked for parameter values that make tip cells (a) move to the sprout tip, and (b) change the morphology of the angiogenic networks. The screening predicted that if tip cells respond less effectively to an endothelial chemoattractant than stalk cells, they move to the tips of the sprouts, which impacts the morphology of the networks. A comparison of this model prediction with genes expressed differentially in tip and stalk cells revealed that the endothelial chemoattractant Apelin and its receptor APJ may match the model prediction. To test the model prediction we inhibited Apelin signaling in our model and in an \emph{in vitro} model of angiogenic sprouting, and found that in both cases inhibition of Apelin or of its receptor APJ reduces sprouting. Based on the prediction of the computational model, we propose that the differential expression of Apelin and APJ yields a "self-generated" gradient mechanisms that accelerates the extension of the sprout.Comment: 48 pages, 10 figures, 8 supplementary figures. Accepted for publication in PLoS ON

    Predictors of Walking App Users With Comparison of Current Users, Previous Users, and Informed Nonusers in a Sample of Dutch Adults: Questionnaire Study

    Get PDF
    BACKGROUND: The last decade has seen a substantial increase in the use of mobile health apps and research into the effects of those apps on health and health behaviors. In parallel, research has aimed at identifying population subgroups that are more likely to use those health apps. Current evidence is limited by two issues. First, research has focused on broad health apps, and little is known about app usage for a specific health behavior. Second, research has focused on comparing current users and current nonusers, without considering subgroups of nonusers. OBJECTIVE: We aimed to provide profile distributions of current users, previous users, and informed nonusers, and to identify predictor variables relevant for profile classification. METHODS: Data were available from 1683 people who participated in a Dutch walking event in Amsterdam that was held in September 2017. They provided information on demographics, self-reported walking behavior, and walking app usage, as well as items from User Acceptance of Information Technology, in an online survey. Data were analyzed using discriminant function analysis and multinomial logistic regression analysis. RESULTS: Most participants were current walking app users (899/1683, 53.4%), while fewer participants were informed nonusers (663/1683, 39.4%) and very few were previous walking app users (121/1683, 7.2%). Current walking app users were more likely to report walking at least 5 days per week and for at least 30 minutes per bout (odds ratio [OR] 1.44, 95% CI 1.11-1.85; P=.005) and more likely to be overweight (OR 1.72, 95% CI 1.24-2.37; P=.001) or obese (OR 1.49, 95% CI 1.08-2.08; P=.005) as compared with informed nonusers. Further, current walking app users perceived their walking apps to be less boring, easy to use and retrieve information, and more helpful to achieve their goals. Effect sizes ranged from 0.10 (95% CI 0.08-0.30) to 1.58 (95% CI 1.47-1.70). CONCLUSIONS: The distributions for walking app usage appeared different from the distributions for more general health app usage. Further, the inclusion of two specific subgroups of nonusers (previous users and informed nonusers) provides important information for health practitioners and app developers to stimulate continued walking app usage, including making information in those apps easy to understand and making it easy to obtain information from the apps, as well as preventing apps from becoming boring and difficult to use for goal attainment

    Oral treatment with Eubacterium hallii improves insulin sensitivity in db/db mice

    Get PDF
    F.B. is supported by Swedish Research Council, Swedish Diabetes Foundation, Swedish Heart Lung Foundation, Swedish Foundation for Strategic Research, Knut and Alice Wallenberg foundation, Göran Gustafsson Foundation, Ingbritt and Arne Lundberg’s foundation, Swedish Heart Lung Foundation, Torsten Söderberg’s Foundation, Ragnar Söderberg’s Foundation, NovoNordisk Foundation, AFA insurances, and LUA-ALF grants from Västra Götalandsregionen and Stockholm County Council. F.B. is a recipient of ERC Consolidator Grant (European Research Council, Consolidator grant 615362—METABASE). W.M.d.V. is supported by the Finland Academy of Sciences (grants 137389, 141140 and 1272870 ), the Netherlands Organization for Scientific Research (Spinoza Award and SIAM Gravity Grant 024.002.002) and the European Research Council (ERC Advanced Grant 250172 MicrobesInside). M.N. is supported by a ZONMW-VIDI grant 2013 (016.146.327).Peer reviewedPublisher PD

    In Vivo Inflammation Does Not Impair ABCA1-Mediated Cholesterol Efflux Capacity of HDL

    Get PDF
    HDL provides atheroprotection by facilitating cholesterol efflex from lipid-laden macrophages in the vessel wall. In vitro studies have suggested impaired efflux capacity of HDL following inflammatory changes. We assessed the impact of acute severe sepsis and mild chronic inflammatory disease on the efflux capacity of HDL. We hypothesize that a more severe inflammatory state leads to stronger impaired cholesterol efflux capacity. Using lipid-laden THP1 cells and fibroblasts we were able to show that efflux capacity of HDL from both patients with severe sepsis or with Crohn's disease (active or in remission), either isolated using density gradient ultracentrifugation or using apoB precipitation, was not impaired. Yet plasma levels of HDL cholesterol and apoA-I were markedly lower in patients with sepsis. Based on the current observations we conclude that inflammatory disease does not interfere with the capacity of HDL to mediate cholesterol efflux. Our findings do not lend support to the biological relevance of HDL function changes in vitro

    Seasonal change in the daily timing of behaviour of the common vole, Microtus arvalis

    Get PDF
    1. Seasonal effects on daily activity patterns in the common vole were established by periodic trapping in the field and continuous year round recording of running wheel and freeding activity in cages exposed to natural meteorological conditions. 2. Trapping revealed decreased nocturnality in winter as compared to summer. This was paralelled by a winter reduction in both nocturnal wheel running and feeding time in cages. 3. Frequent trap checks revealed a 2 h rhythm in daytime catches in winter, not in summer. Cage feeding activity in daytime was always organized in c. 2 h intervals, but day-to-day variations in phase blurred the rhythm in summer in a summation of individual daily records. Thus both seasonal and short-term temporal patterns are consistent between field trappings and cage feeding records. 4. Variables associated with the seasonal change in daily pattern were: reproductive state (sexually active voles more nocturnal), age (juveniles more nocturnal), temperature (cold days: less nocturnal), food (indicated by feeding experiments), habitat structure (more nocturnal in habitat with underground tunnels). 5. Minor discrepancies between field trappings and cage feeding activity can be explained by assuming increased trappability of voles in winter. Cage wheel running is not predictive of field trapping patterns and is thought to reflect behavioral motivations not associated with feeding but with other activities (e.g., exploratory, escape, interactive behaviour) undetected by current methods, including radiotelemetry and passage-counting. 6. Winter decrease in nocturnality appears to involve a reduction in nocturnal non-feeding and feeding behaviour and is interpreted primarily as an adaptation to reduce energy expenditure in adverse but socially stable winter conditions.

    Segmental volvulus of the ileum without malrotation in an infant: A case report

    Get PDF
    AbstractIntestinal volvulus usually occur secondary to malrotation, and primary segmental volvulus has rarely been reported. A 12-month-old female infant presented with a 3-day history of excessive vomiting. An ultrasonography revealed a “whirlpool sign” in the right upper abdomen, suggesting small bowel volvulus with obstruction. Laparotomy revealed a twisted, viable loop of small bowel in the right upper abdomen, and abnormal adhesions were noted between the distal and mid ileum, with resulting mesenteric narrowing. Attempted mesenteric widening by dissection of the peritoneum overlying the adhesions failed, because of abnormal, taut mesenteric vessels. Subsequent resection of the involved segment cured the patient. Recurrent obstructive symptoms in an infant can be an atypical presentation of segmental volvulus, and segmental volvulus should be included in the differential diagnosis of such cases

    Nitrate contamination of drinking water: relationship with HPRT variant frequency in lymphocyte DNA and urinary excretion of N-nitrosamines.

    Get PDF
    We studied peripheral lymphocyte HPRT variant frequency and endogenous nitrosation in human populations exposed to various nitrate levels in their drinking water. Four test populations of women volunteers were compared. Low and medium tap water nitrate exposure groups (14 and 21 subjects) were using public water supplies with nitrate levels of 0.02 and 17.5 mg/l, respectively. Medium and high well water nitrate exposure groups (6 and 9 subjects) were using private water wells with mean nitrate levels of 25 and 135 mg/l, respectively. Higher nitrate intake by drinking water consumption resulted in a dose-dependent increase in 24-hr urinary nitrate excretion and in increased salivary nitrate and nitrite levels. The mean log variant frequency of peripheral lymphocytes was significantly higher in the medium well water exposure group than in the low and medium tap water exposure groups. An inverse correlation between peripheral lymphocyte labeling index and nitrate concentration of drinking water was observed. Analysis of N-nitrosamine in the urine of 22 subjects by gas chromatography-mass spectrometry revealed the presence of N-nitrosopyrrolidine in 18 subjects. Analysis of the mutagenicity of well water samples showed that a small number of the well water samples were mutagenic in the Ames Salmonella typhimurium test after concentration over XAD-2 resin. In conclusion, consumption of drinking water, especially well water, with high nitrate levels can imply a genotoxic risk for humans as indicated by increased HPRT variant frequencies and by endogenous formation of carcinogenic N-nitroso compounds from nitrate-derived nitrite

    Reduced CETP glycosylation and activity in patients with homozygous B4GALT1 mutations

    Get PDF
    The importance of protein glycosylation in regulating lipid metabolism is becoming increasingly apparent. We set out to further investigate this by studying the effects of defective glycosylation on plasma lipids in patients with B4GALT1-CDG, caused by a mutation in B4GALT1 with defective N-linked glycosylation. We studied plasma lipids, cholesteryl ester transfer protein (CETP) glyco-isoforms with isoelectric focusing followed by a western blot and CETP activity in three known B4GALT1-CDG patients and compared them with 11 age- and gender-matched, healthy controls. B4GALT1-CDG patients have significantly lowered non-high density lipoprotein cholesterol (HDL-c) and total cholesterol to HDL-c ratio compared with controls and larger HDL particles. Plasma CETP was hypoglycosylated and less active in B4GALT1-CDG patients compared to matched controls. Our study provides insight into the role of protein glycosylation in human lipoprotein homeostasis. The hypogalactosylated, hypo-active CETP found in patients with B4GALT1-CDG indicates a role of protein galactosylation in regulating plasma HDL and LDL. Patients with B4GALT1-CDG have large HDL particles probably due to hypogalactosylated, hypo-active CETP

    Taking One Step Back in Familial Hypercholesterolemia:STAP1 Does Not Alter Plasma LDL (Low-Density Lipoprotein) Cholesterol in Mice and Humans

    Get PDF
    International audienceSTAP1, encoding for STAP1 (signal transducing adaptor family member 1), has been reported as a candidate gene associated with familial hypercholesterolemia. Unlike established familial hypercholesterolemia genes, expression of STAP1 is absent in liver but mainly observed in immune cells. In this study, we set out to validate STAP1 as a familial hypercholesterolemia gene. Approach and Results: A whole-body Stap1 knockout mouse model (Stap1 -/ - ) was generated and characterized, without showing changes in plasma lipid levels compared with controls. In follow-up studies, bone marrow from Stap1 -/ - mice was transplanted to Ldlr -/ - mice, which did not show significant changes in plasma lipid levels or atherosclerotic lesions. To functionally assess whether STAP1 expression in B cells can affect hepatic function, HepG2 cells were cocultured with peripheral blood mononuclear cells isolated from heterozygotes carriers of STAP1 variants and controls. The peripheral blood mononuclear cells from STAP1 variant carriers and controls showed similar LDLR mRNA and protein levels. Also, LDL (low-density lipoprotein) uptake by HepG2 cells did not differ upon coculturing with peripheral blood mononuclear cells isolated from either STAP1 variant carriers or controls. In addition, plasma lipid profiles of 39 carriers and 71 family controls showed no differences in plasma LDL cholesterol, HDL (high-density lipoprotein) cholesterol, triglycerides, and lipoprotein(a) levels. Similarly, B-cell populations did not differ in a group of 10 STAP1 variant carriers and 10 age- and sex-matched controls. Furthermore, recent data from UK Biobank do not show association between STAP1 rare gene variants and LDL cholesterol

    Nile Red Quantifier:A novel and quantitative tool to study lipid accumulation in patient-derived circulating monocytes using confocal microscopy

    Get PDF
    The inflammatory profile of circulating monocytes is an important biomarker for atherosclerotic plaque vulnerability. Recent research revealed that peripheral lipid uptake by monocytes alters their phenotype toward an inflammatory state and this coincides with an increased lipid droplet (LD) content. Determination of lipid content of circulating monocytes is, however, not very well established. Based on Nile Red (NR) neutral LD imaging, using confocal microscopy and computational analysis, we developed NR Quantifier (NRQ), a novel quantification method to assess LD content in monocytes. Circulating monocytes were isolated from blood and used for the NR staining procedure. In monocytes stained with NR, we clearly distinguished, based on 3D imaging, phospholipids and exclusively intracellular neutral lipids. Next, we developed and validated NRQ, a semi-automated quantification program that detects alterations in lipid accumulation. NRQ was able to detect LD alterations after ex vivo exposure of isolated monocytes to freshly isolated LDL in a time-and dose-dependent fashion. Finally, we validated NRQ in patients with familial hypercholesterolemia and obese subjects in pre- and postprandial state. In conclusion, NRQ is a suitable tool to detect even small differences in neutral LD content in circulating monocytes using NR staining
    corecore