8 research outputs found

    Searching for new antiarrhythmic agents: evaluation of meta-hydroxymexiletine enantiomers.

    No full text
    Mexiletine is a very well-known class IB antiarrhythmic drug, whose enantiomers differ in both pharmacodynamic and pharmacokinetic properties, the (R)-isomer being the eutomer on experimental arrhythmias and in binding studies on cardiac voltage-gated sodium channels. meta-Hydroxymexiletine (MHM) is a minor metabolite of mexiletine, which has demonstrated to be more potent than the parent compound. Herein we report the synthesis and biological evaluation of MHM enantiomers for their potential antiarrhythmic activity. The same stereoselectivity pattern observed for mexiletine was found for MHM: the (R)-enantiomer of MHM was the eutomer on ac-arrhythmia also showing a negative inotropism higher than the one displayed by mexiletine and, at the same time, a decreased vasorelaxant activity on guinea-pig left atrium and guinea-pig ileum longitudinal smooth muscle

    Enhanced solubility and antibacterial activity of lipophilic fluoro-substituted N-benzoyl-2-aminobenzothiazoles by complexation with beta-cyclodextrins

    No full text
    Some lipophilic fluoro-substituted N-benzoyl-2-aminobenzothiazole antibacterial agents have been evaluated for their activity in the presence of cyclodextrins (CDs) containing aqueous solutions where CDs are adopted as solubilizing excipients for improving the poor water solubility of these compounds. For such purpose both the natural β-CD and one of FDA/EMA approved CDs for parenteral use (i.e. HP-β-CD) have been employed. The solubility rank order observed was accounted for by thermal analysis (Differential Scanning Calorimetry) and FT-IR spectroscopy. The most promising compound was subjected to further NMR spectroscopic studies and molecular modelling simulations to verify the interactions between the guest molecule and the CD cavity. The assessment of the antibacterial activity of such compounds against selected Gram positive and Gram negative bacterial strains clearly showed that their antimicrobial effectiveness may, quite in all instances, be positively affected by complexation with β-CD and HP-β-CD. These results, which are in some ways in contrast with those already reported in the literature, are herein discussed on the basis of plausible mechanisms. Moreover, this investigation also reveals that the described methodology of complexing both lipophilic and hydrophilic antimicrobial agents with CDs may be an useful approach to enhance their effectiveness as well as a promising strategy to overcome even the microbial resistance problem

    Synthesis and styrene copolymerization of novel bromo, chloro, fluoro, and iodo ring-substituted octyl phenylcyanoacrylates

    No full text
    Halogen ring-substituted octyl phenylcyanoacrylates, RPhCH=C(CN)CO2CH2(CH2)6CH3 (where R is 4-bromo, 2-chloro, 3-chloro, 4-chloro, 2-fluoro, 3-fluoro, 4-fluoro, 2-iodo, 3-iodo, 4-iodo) were prepared and copolymerized with styrene. The acrylates were synthesized by the piperidine catalyzed Knoevenagel condensation of ring-substituted benzaldehydes and octyl cyanoacetate, and characterized by CHN analysis, IR, 1H and 13C NMR. All the acrylates were copolymerized with styrene in solution with radical initiation (ABCN) at 70C. The compositions of the copolymers were calculated from nitrogen analysis
    corecore