1,801 research outputs found
Cool for Cats
The iconic Schr\"odinger's cat state describes a system that may be in a
superposition of two macroscopically distinct states, for example two clearly
separated oscillator coherent states. Quite apart from their role in
understanding the quantum classical boundary, such states have been suggested
as offering a quantum advantage for quantum metrology, quantum communication
and quantum computation. As is well known these applications have to face the
difficulty that the irreversible interaction with an environment causes the
superposition to rapidly evolve to a mixture of the component states in the
case that the environment is not monitored. Here we show that by engineering
the interaction with the environment there exists a large class of systems that
can evolve irreversibly to a cat state. To be precise we show that it is
possible to engineer an irreversible process so that the steady state is close
to a pure Schr\"odinger's cat state by using double well systems and an
environment comprising two-photon (or phonon) absorbers. We also show that it
should be possible to prolong the lifetime of a Schr\"odinger's cat state
exposed to the destructive effects of a conventional single-photon decohering
environment. Our protocol should make it easier to prepare and maintain
Schr\"odinger cat states which would be useful in applications of quantum
metrology and information processing as well as being of interest to those
probing the quantum to classical transition.Comment: 10 pages, 7 figures. Significantly updated version with supplementary
informatio
Selective spin coupling through a single exciton
We present a novel scheme for performing a conditional phase gate between two
spin qubits in adjacent semiconductor quantum dots through delocalized single
exciton states, formed through the inter-dot Foerster interaction. We consider
two resonant quantum dots, each containing a single excess conduction band
electron whose spin embodies the qubit. We demonstrate that both the two-qubit
gate, and arbitrary single-qubit rotations, may be realized to a high fidelity
with current semiconductor and laser technology.Comment: 5 pages, 3 figures; published version, equation formatting improved,
references adde
Weak nonlinearities: A new route to optical quantum computation
Quantum information processing (QIP) offers the promise of being able to do
things that we cannot do with conventional technology. Here we present a new
route for distributed optical QIP, based on generalized quantum non-demolition
measurements, providing a unified approach for quantum communication and
computing. Interactions between photons are generated using weak
non-linearities and intense laser fields--the use of such fields provides for
robust distribution of quantum information. Our approach requires only a
practical set of resources, and it uses these very efficiently. Thus it
promises to be extremely useful for the first quantum technologies, based on
scarce resources. Furthermore, in the longer term this approach provides both
options and scalability for efficient many-qubit QIP.Comment: 7 Pages, 4 Figure
Efficient optical quantum information processing
Quantum information offers the promise of being able to perform certain
communication and computation tasks that cannot be done with conventional
information technology (IT). Optical Quantum Information Processing (QIP) holds
particular appeal, since it offers the prospect of communicating and computing
with the same type of qubit. Linear optical techniques have been shown to be
scalable, but the corresponding quantum computing circuits need many auxiliary
resources. Here we present an alternative approach to optical QIP, based on the
use of weak cross-Kerr nonlinearities and homodyne measurements. We show how
this approach provides the fundamental building blocks for highly efficient
non-absorbing single photon number resolving detectors, two qubit parity
detectors, Bell state measurements and finally near deterministic control-not
(CNOT) gates. These are essential QIP devicesComment: Accepted to the Journal of optics B special issue on optical quantum
computation; References update
The efficiencies of generating cluster states with weak non-linearities
We propose a scalable approach to building cluster states of matter qubits
using coherent states of light. Recent work on the subject relies on the use of
single photonic qubits in the measurement process. These schemes can be made
robust to detector loss, spontaneous emission and cavity mismatching but as a
consequence the overhead costs grow rapidly, in particular when considering
single photon loss. In contrast, our approach uses continuous variables and
highly efficient homodyne measurements. We present a two-qubit scheme, with a
simple bucket measurement system yielding an entangling operation with success
probability 1/2. Then we extend this to a three-qubit interaction, increasing
this probability to 3/4. We discuss the important issues of the overhead cost
and the time scaling. This leads to a "no-measurement" approach to building
cluster states, making use of geometric phases in phase space.Comment: 21 pages, to appear in special issue of New J. Phys. on
"Measurement-Based Quantum Information Processing
Model for an irreversible bias current in the superconducting qubit measurement process
The superconducting charge-phase "quantronium" qubit is considered in order to develop a model for the measurement process used in the experiment of Vion [Science 296, 886 (2002)]. For this model we propose a method for including the bias current in the readout process in a fundamentally irreversible way, which to first order is approximated by the Josephson junction tilted-washboard potential phenomenology. The decohering bias current is introduced in the form of a Lindblad operator and the Wigner function for the current-biased readout Josephson junction is derived and analyzed. During the readout current pulse used in the quantronium experiment we find that the coherence of the qubit initially prepared in a symmetric superposition state is lost at a time of 0.2 ns after the bias current pulse has been applied, a time scale that is much shorter than the experimental readout time. Additionally we look at the effect of Johnson-Nyquist noise with zero mean from the current source during the qubit manipulation and show that the decoherence due to the irreversible bias current description is an order of magnitude smaller than that found through adding noise to the reversible tilted-washboard potential model. Our irreversible bias current model is also applicable to persistent-current-based qubits where the state is measured according to its flux via a small-inductance direct-current superconducting quantum interference device
Signatures of chaotic and non-chaotic-like behaviour in a non-linear quantum oscillator through photon detection
The driven non-linear duffing osillator is a very good, and standard, example
of a quantum mechanical system from which classical-like orbits can be
recovered from unravellings of the master equation. In order to generated such
trajectories in the phase space of this oscillator in this paper we use a the
quantum jumps unravelling together with a suitable application of the
correspondence principle. We analyse the measured readout by considering the
power spectra of photon counts produced by the quantum jumps. Here we show that
localisation of the wave packet from the measurement of the oscillator by the
photon detector produces a concomitant structure in the power spectra of the
measured output. Furthermore, we demonstrate that this spectral analysis can be
used to distinguish between different modes of the underlying dynamics of the
oscillator.Comment: 7 pages, 6 figure
Applications of Coherent Population Transfer to Quantum Information Processing
We develop a theoretical framework for the exploration of quantum mechanical
coherent population transfer phenomena, with the ultimate goal of constructing
faithful models of devices for classical and quantum information processing
applications. We begin by outlining a general formalism for weak-field quantum
optics in the Schr\"{o}dinger picture, and we include a general
phenomenological representation of Lindblad decoherence mechanisms. We use this
formalism to describe the interaction of a single stationary multilevel atom
with one or more propagating classical or quantum laser fields, and we describe
in detail several manifestations and applications of electromagnetically
induced transparency. In addition to providing a clear description of the
nonlinear optical characteristics of electromagnetically transparent systems
that lead to ``ultraslow light,'' we verify that -- in principle -- a
multi-particle atomic or molecular system could be used as either a low power
optical switch or a quantum phase shifter. However, we demonstrate that the
presence of significant dephasing effects destroys the induced transparency,
and that increasing the number of particles weakly interacting with the probe
field only reduces the nonlinearity further. Finally, a detailed calculation of
the relative quantum phase induced by a system of atoms on a superposition of
spatially distinct Fock states predicts that a significant quasi-Kerr
nonlinearity and a low entropy cannot be simultaneously achieved in the
presence of arbitrary spontaneous emission rates. Within our model, we identify
the constraints that need to be met for this system to act as a one-qubit and a
two-qubit conditional phase gate.Comment: 25 pages, 14 figure
Single photon quantum non-demolition in the presence of inhomogeneous broadening
Electromagnetically induced transparency (EIT) has been often proposed for
generating nonlinear optical effects at the single photon level; in particular,
as a means to effect a quantum non-demolition measurement of a single photon
field. Previous treatments have usually considered homogeneously broadened
samples, but realisations in any medium will have to contend with inhomogeneous
broadening. Here we reappraise an earlier scheme [Munro \textit{et al.} Phys.
Rev. A \textbf{71}, 033819 (2005)] with respect to inhomogeneities and show an
alternative mode of operation that is preferred in an inhomogeneous
environment. We further show the implications of these results on a potential
implementation in diamond containing nitrogen-vacancy colour centres. Our
modelling shows that single mode waveguide structures of length in single-crystal diamond containing a dilute ensemble of NV
of only 200 centres are sufficient for quantum non-demolition measurements
using EIT-based weak nonlinear interactions.Comment: 21 pages, 9 figures (some in colour) at low resolution for arXiv
purpose
The Depth Resolution of Secondary Ion Mass Spectrometers: A Critical Evaluation
The ability of five Secondary Ion Mass Spectrometry (SIMS) instruments to resolve thin layer and modulated dopant structures by depth profiling has been assessed. Three magnetic sector instruments (two Cameca IMS 3f\u27s and one 4f), which use optical gating and a high extraction field, were used, together with two different quadrupole based instruments (EVA 2000 and Atomika) , which use electronic gating and a low extraction field. The test structure, a thirty-one peak boron-in-silicon modulating dopant structure, was grown by Molecular Beam Epitaxy (MBE).
In all the depth profiles the near surface peaks appeared narrow and asymmetric, being broadened only by fundamental processes (e.g., atomic mixing and recoil implantation). As the profiles proceeded, however, further broadening was observed. This phenomena varied markedly both from one instrument to another and from one experiment to another on the same instrument. In some cases the loss of depth resolution with depth was manifested by broadening mainly in the leading edge, in others the trailing edge, of successive boron peaks. The \u27order of merit\u27 of the instruments thus depended on the parameter used to define depth resolution.
The loss of peak (depth) resolution with depth was due to variations in primary ion beam density across the gated area of the crater, which led to uneven etching. The changes in peak shape with depth can be explained by a numerical model of the etching process. These observations dictate that the depth resolution of a SIMS instrument should not be measured in terms of a single interface width, such as the leading or trailing edge
- …