334 research outputs found

    Stacking classifiers for anti-spam filtering of e-mail

    Full text link
    We evaluate empirically a scheme for combining classifiers, known as stacked generalization, in the context of anti-spam filtering, a novel cost-sensitive application of text categorization. Unsolicited commercial e-mail, or "spam", floods mailboxes, causing frustration, wasting bandwidth, and exposing minors to unsuitable content. Using a public corpus, we show that stacking can improve the efficiency of automatically induced anti-spam filters, and that such filters can be used in real-life applications

    PLEISTOCENE PALAEOCLIMATIC EVOLUTION FROM AGIOS GEORGIOS CAVE SPELEOTHEM (KILKIS, N. GREECE)

    Get PDF
    Palaeoclimatic reconstruction in N. Greece has been investigated in this study, using stable isotope analyses and U/Th dating of a speleothem (stalactite) from the cave of Agios Georgios (Kilkis). Sampling sequence was followed in detail in order to obtain high resolution analysis of the proxy. Speleothem δ18O entirely depends on two factors: changes in the δ18O of the percolation waters (a proxy for local rainfall δ18O) and the temperature of water-calcite fractionation inside the cave (a proxy for outside air temperatures). During periods of relatively stable temperatures, δ13C shifts are caused principally by variations in soil CO2 input and physico-chemical processes inside the cave. More important processes affect the δ13C signal of speleothem inside the cave are length of flow path and rates of CO2 degassing.The lower δ13C calcite values indicate greater respiratory activity of soils under wetter conditions. The stalagmite layers were dated through U/Th geochronological method, which places the carbonate precipitation in Middle Pleistocene (630-300ka BP). The isotopic composition of the layers was used in combination with the dating results to reconstruct the evolution of the area of Kilkis. Correlation with global climatic records shows that major climatic transitions that influenced northern hemisphere seem to have also affected the region of N. Greece

    PLEISTOCENE PALAEOCLIMATIC EVOLUTION FROM AGIOS GEORGIOS CAVE SPELEOTHEM (KILKIS, N. GREECE)

    Get PDF
    Palaeoclimatic reconstruction in N. Greece has been investigated in this study, using stable isotope analyses and U/Th dating of a speleothem (stalactite) from the cave of Agios Georgios (Kilkis). Sampling sequence was followed in detail in order to obtain high resolution analysis of the proxy. Speleothem δ18O entirely depends on two factors: changes in the δ18O of the percolation waters (a proxy for local rainfall δ18O) and the temperature of water-calcite fractionation inside the cave (a proxy for outside air temperatures). During periods of relatively stable temperatures, δ13C shifts are caused principally by variations in soil CO2 input and physico-chemical processes inside the cave. More important processes affect the δ13C signal of speleothem inside the cave are length of flow path and rates of CO2 degassing.The lower δ13C calcite values indicate greater respiratory activity of soils under wetter conditions. The stalagmite layers were dated through U/Th geochronological method, which places the carbonate precipitation in Middle Pleistocene (630-300ka BP). The isotopic composition of the layers was used in combination with the dating results to reconstruct the evolution of the area of Kilkis. Correlation with global climatic records shows that major climatic transitions that influenced northern hemisphere seem to have also affected the region of N. Greece

    A Hidden Markov Model method, capable of predicting and discriminating β-barrel outer membrane proteins

    Get PDF
    BACKGROUND: Integral membrane proteins constitute about 20–30% of all proteins in the fully sequenced genomes. They come in two structural classes, the α-helical and the β-barrel membrane proteins, demonstrating different physicochemical characteristics, structure and localization. While transmembrane segment prediction for the α-helical integral membrane proteins appears to be an easy task nowadays, the same is much more difficult for the β-barrel membrane proteins. We developed a method, based on a Hidden Markov Model, capable of predicting the transmembrane β-strands of the outer membrane proteins of gram-negative bacteria, and discriminating those from water-soluble proteins in large datasets. The model is trained in a discriminative manner, aiming at maximizing the probability of correct predictions rather than the likelihood of the sequences. RESULTS: The training has been performed on a non-redundant database of 14 outer membrane proteins with structures known at atomic resolution; it has been tested with a jacknife procedure, yielding a per residue accuracy of 84.2% and a correlation coefficient of 0.72, whereas for the self-consistency test the per residue accuracy was 88.1% and the correlation coefficient 0.824. The total number of correctly predicted topologies is 10 out of 14 in the self-consistency test, and 9 out of 14 in the jacknife. Furthermore, the model is capable of discriminating outer membrane from water-soluble proteins in large-scale applications, with a success rate of 88.8% and 89.2% for the correct classification of outer membrane and water-soluble proteins respectively, the highest rates obtained in the literature. That test has been performed independently on a set of known outer membrane proteins with low sequence identity with each other and also with the proteins of the training set. CONCLUSION: Based on the above, we developed a strategy, that enabled us to screen the entire proteome of E. coli for outer membrane proteins. The results were satisfactory, thus the method presented here appears to be suitable for screening entire proteomes for the discovery of novel outer membrane proteins. A web interface available for non-commercial users is located at: , and it is the only freely available HMM-based predictor for β-barrel outer membrane protein topology

    COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow-Up: JACC State-of-the-Art Review

    Get PDF
    © 2020 American College of Cardiology Foundation Coronavirus disease-2019 (COVID-19), a viral respiratory illness caused by the severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), may predispose patients to thrombotic disease, both in the venous and arterial circulations, because of excessive inflammation, platelet activation, endothelial dysfunction, and stasis. In addition, many patients receiving antithrombotic therapy for thrombotic disease may develop COVID-19, which can have implications for choice, dosing, and laboratory monitoring of antithrombotic therapy. Moreover, during a time with much focus on COVID-19, it is critical to consider how to optimize the available technology to care for patients without COVID-19 who have thrombotic disease. Herein, the authors review the current understanding of the pathogenesis, epidemiology, management, and outcomes of patients with COVID-19 who develop venous or arterial thrombosis, of those with pre-existing thrombotic disease who develop COVID-19, or those who need prevention or care for their thrombotic disease during the COVID-19 pandemic

    Surface profile gradient in amorphous Ta<inf>2</inf>O<inf>5</inf> semi conductive layers regulates nanoscale electric current stability

    Get PDF
    © 2016 The Author(s)A link between the morphological characteristics and the electric properties of amorphous layers is established by means of atomic, conductive, electrostatic force and thermal scanning microscopy. Using amorphous Ta2O5 (a-Ta2O5) semiconductive layer, it is found that surface profile gradients (morphological gradient), are highly correlated to both the electron energy gradient of trapped electrons in interactive Coulombic sites and the thermal gradient along conductive paths and thus thermal and electric properties are correlated with surface morphology at the nanoscale. Furthermore, morphological and electron energy gradients along opposite conductive paths of electrons intrinsically impose a current stability anisotropy. For either long conductive paths (L > 1 μm) or along symmetric nanodomains, current stability for both positive and negative currents i is demonstrated. On the contrary, for short conductive paths along non-symmetric nanodomains, the set of independent variables (L, i) is spanned by two current stability/intability loci. One locus specifies a stable state for negative currents, while the other locus also describes a stable state for positive currents

    Surface profile gradient in amorphous Ta<inf>2</inf>O<inf>5</inf> semi conductive layers regulates nanoscale electric current stability

    Get PDF
    © 2016 The Author(s).A link between the morphological characteristics and the electric properties of amorphous layers is established by means of atomic, conductive, electrostatic force and thermal scanning microscopy. Using amorphous Ta2O5 (a-Ta2O5) semiconductive layer, it is found that surface profile gradients (morphological gradient), are highly correlated to both the electron energy gradient of trapped electrons in interactive Coulombic sites and the thermal gradient along conductive paths and thus thermal and electric properties are correlated with surface morphology at the nanoscale.Furthermore, morphological and electron energy gradients along opposite conductive paths of electrons intrinsically impose a current stability anisotropy. For either long conductive paths (L .>. 1. μm) or along symmetric nanodomains, current stability for both positive and negative currents . i is demonstrated. On the contrary, for short conductive paths along non-symmetric nanodomains, the set of independent variables (L, i) is spanned by two current stability/intability loci. One locus specifies a stable state for negative currents, while the other locus also describes a stable state for positive currents

    Surface profile gradient in amorphous Ta<inf>2</inf>O<inf>5</inf> semi conductive layers regulates nanoscale electric current stability

    Get PDF
    © 2016 The Author(s)A link between the morphological characteristics and the electric properties of amorphous layers is established by means of atomic, conductive, electrostatic force and thermal scanning microscopy. Using amorphous Ta2O5 (a-Ta2O5) semiconductive layer, it is found that surface profile gradients (morphological gradient), are highly correlated to both the electron energy gradient of trapped electrons in interactive Coulombic sites and the thermal gradient along conductive paths and thus thermal and electric properties are correlated with surface morphology at the nanoscale. Furthermore, morphological and electron energy gradients along opposite conductive paths of electrons intrinsically impose a current stability anisotropy. For either long conductive paths (L > 1 μm) or along symmetric nanodomains, current stability for both positive and negative currents i is demonstrated. On the contrary, for short conductive paths along non-symmetric nanodomains, the set of independent variables (L, i) is spanned by two current stability/intability loci. One locus specifies a stable state for negative currents, while the other locus also describes a stable state for positive currents
    • …
    corecore