282 research outputs found

    On the Unusual Depletions toward Sk 155, or What Are the Small Magellanic Cloud Dust Grains Made of?

    Full text link
    The dust in the Small Magellanic Cloud (SMC), an ideal analog of primordial galaxies at high redshifts, differs markedly from that in the Milky Way by exhibiting a steeply rising far-ultraviolet extinction curve, an absence of the 2175 Angstrom extinction feature, and a local minimum at ~12 micron in its infrared emission spectrum, suggesting the lack of ultrasmall carbonaceous grains (i.e. polycyclic aromatic hydrocarbon molecules) which are ubiquitously seen in the Milky Way. While current models for the SMC dust all rely heavily on silicates, recent observations of the SMC sightline toward Sk 155 indicated that Si and Mg are essentially undepleted and the depletions of Fe range from mild to severe, suggesting that metallic grains and/or iron oxides, instead of silicates, may dominate the SMC dust. However, in this Letter we apply the Kramers-Kronig relation to demonstrate that neither metallic grains nor iron oxides are capable of accounting for the observed extinction; silicates remain as an important contributor to the extinction, consistent with current models for the SMC dust.Comment: 12 pages, 3 figures; The Astrophysical Journal Letters, in pres

    Multiwavelength Observations of the Low Metallicity Blue Compact Dwarf Galaxy SBS 0335-052

    Get PDF
    New infrared and millimeter observations from Keck, Palomar, ISO, and OVRO and archival data from the NRAO VLA and IRAS are presented for the low metallicity blue compact dwarf galaxy SBS 0335-052. Mid-infrared imaging shows this young star-forming system is compact (0.31"; 80 pc) at 12.5 microns. The large Br-gamma equivalent width (235 Angstroms) measured from integral field spectroscopy is indicative of a ~5 Myr starburst. The central source appears to be optically thin in emission, containing both a warm (~80 K) and a hot (~210 K) dust component, and the overall interstellar radiation field is quite intense, about 10,000 times the intensity in the solar neighborhood. CO emission is not detected, though the galaxy shows an extremely high global H I gas-to-dust mass ratio, high even for blue compact dwarfs. Finally, the galaxy's mid-infrared-to-optical and mid-to-near-infrared luminosity ratios are quite high, whereas its far-infrared-to-radio and far-infrared-to-optical flux ratios are surprisingly similar to what is seen in normal star-forming galaxies. The relatively high bolometric infrared-to-radio ratio is more easily understood in the context of such a young system with negligible nonthermal radio continuum emission. These new lines of evidence may outline features common to primordial galaxies found at high redshift.Comment: 28 pages including 6 figures; accepted for publication in the Astronomical Journa

    The star formation properties of disk galaxies: Halpha imaging of galaxies in the Coma supercluster

    Full text link
    We present integrated H alpha measurements obtained from imaging observations of 98 late-type galaxies, primarily selected in the Coma supercluster. These data, combined with H alpha photometry from the literature, include a magnitude selected sample of spiral (Sa to Irr) galaxies belonging to the "Great Wall" complete up to mp=15.4, thus composed of galaxies brighter than Mp=-18.8 (H0=100 km Mpc^-1 s^-1). The frequency distribution of the H alpha E.W., determined for the first time from an optically complete sample, is approximately gaussian peaking at E.W. ~25 A. We find that, at the present limiting luminosity, the star formation properties of spiral+Irr galaxies members of the Coma and A1367 clusters do not differ significantly from those of the isolated ones belonging to the Great Wall. The present analysis confirms the well known increase of the current massive star formation rate (SFR) with Hubble type. Moreover perhaps a more fundamental anticorrelation exists between the SFR and the mass of disk galaxies: low-mass spirals and dwarf systems have present SFRs ~50 times higher than giant spirals. This result is consistent with the idea that disk galaxies are coeval, evolve as "closed systems" with exponentially declining SFR and that the mass of their progenitor protogalaxies is the principal parameter governing their evolution. Massive systems having high initial efficiency of collapse, or a short collapse time-scale, have retained little gas to feed the present epoch of star formation. These findings support the conclusions of Gavazzi & Scodeggio (1996) who studyed the color-mass relation of a local galaxy sample and agree with the analysis by Cowie et al. (1996) who traced the star formation history of galaxies up to z>1.Comment: 13 pages (LateX) + 24 figures + 4 tables. To appear in Astronomical Journal, April 1998 issu

    A Comparative Analysis of Weizmannia coagulans Genomes Unravels the Genetic Potential for Biotechnological Applications

    Get PDF
    The production of biochemicals requires the use of microbial strains with efficient substrate conversion and excellent environmental robustness, such as Weizmannia coagulans species. So far, the genomes of 47 strains have been sequenced. Herein, we report a comparative genomic analysis of nine strains on the full repertoire of Carbohydrate-Active enZymes (CAZymes), secretion systems, and resistance mechanisms to environmental challenges. Moreover, Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) immune system along with CRISPR-associated (Cas) genes, was also analyzed. Overall, this study expands our understanding of the strain’s genomic diversity of W. coagulans to fully exploit its potential in biotechnological applications

    Towards an Understanding of the Mid-Infrared Surface Brightness of Normal Galaxies

    Get PDF
    We report a mid-infrared color and surface brightness analysis of IC 10, NGC 1313, and NGC 6946, three of the nearby galaxies studied under the Infrared Space Observatory Key Project on Normal Galaxies. Images with < 9 arcsecond (170 pc) resolution of these nearly face-on, late-type galaxies were obtained using the LW2 (6.75 mu) and LW3 (15 mu) ISOCAM filters. Though their global I_nu(6.75 mu)/I_nu(15 mu) flux ratios are similar and typical of normal galaxies, they show distinct trends of this color ratio with mid-infrared surface brightness. We find that I_nu(6.75 mu)/I_nu(15 mu) ~< 1 only occurs for regions of intense heating activity where the continuum rises at 15 micron and where PAH destruction can play an important role. The shape of the color-surface brightness trend also appears to depend, to the second-order, on the hardness of the ionizing radiation. We discuss these findings in the context of a two-component model for the phases of the interstellar medium and suggest that star formation intensity is largely responsible for the mid-infrared surface brightness and colors within normal galaxies, whereas differences in dust column density are the primary drivers of variations in the mid-infrared surface brightness between the disks of normal galaxies.Comment: 19 pages, 6 figures, uses AAS LaTeX; to appear in the November Astronomical Journa

    An ArsR/SmtB family member regulates arsenic resistance genes unusually arranged in Thermus thermophilus HB27.

    Get PDF
    Arsenic resistance is commonly clustered in ars operons in bacteria; main ars operon components encode an arsenate reductase, a membrane extrusion protein, and an As-sensitive transcription factor. In the As-resistant thermophile Thermus thermophilus HB27, genes encoding homologues of these proteins are interspersed in the chromosome. In this article, we show that two adjacent genes, TtsmtB, encoding an ArsR/SmtB transcriptional repressor and, TTC0354, encoding a Zn2+/Cd2+-dependent membrane ATPase are involved in As resistance; differently from characterized ars operons, the two genes are transcribed from dedicated promoters upstream of their respective genes, whose expression is differentially regulated at transcriptional level. Mutants defective in TtsmtB or TTC0354 are more sensitive to As than the wild type, proving their role in arsenic resistance. Recombinant dimeric TtSmtB binds in vitro to both promoters, but its binding capability decreases upon interaction with arsenate and, less efficiently, with arsenite. In vivo and in vitro experiments also demonstrate that the arsenate reductase (TtArsC) is subjected to regulation by TtSmtB. We propose a model for the regulation of As resistance in T. thermophilus in which TtSmtB is the arsenate sensor responsible for the induction of TtArsC which generates arsenite exported by TTC0354 efflux protein to detoxify cells

    Obscuration in AGNs: near-infrared luminosity relations and dust colors

    Full text link
    We combine two approaches to isolate the AGN luminosity at near-infrared wavelengths and relate the near-IR pure AGN luminosity to other tracers of the AGN. Using integral-field spectroscopic data of an archival sample of 51 local AGNs, we estimate the fraction of non-stellar light by comparing the nuclear equivalent width of the stellar 2.3 micron CO absorption feature with the intrinsic value for each galaxy. We compare this fraction to that derived from a spectral decomposition of the integrated light in the central arc second and find them to be consistent with each other. Using our estimates of the near-IR AGN light, we find a strong correlation with presumably isotropic AGN tracers. We show that a significant offset exists between type 1 and type 2 sources in the sense that type 1 sources are 7 (10) times brighter in the near-IR at log L_MIR = 42.5 (log L_X = 42.5). These offsets only becomes clear when treating infrared type 1 sources as type 1 AGNs. All AGNs have very red near-to-mid-IR dust colors. This, as well as the range of observed near-IR temperatures, can be explained with a simple model with only two free parameters: the obscuration to the hot dust and the ratio between the warm and hot dust areas. We find obscurations of A_V (hot) = 5 - 15 mag for infrared type 1 sources and A_V (hot) = 15 - 35 mag for type 2 sources. The ratio of hot dust to warm dust areas of about 1000 is nicely consistent with the ratio of radii of the respective regions as found by infrared interferometry.Comment: 17 pages, 10 Figures, 3 Tables, accepted by A&
    • …
    corecore