9,338 research outputs found

    Quantifying the Effect of Non-Larmor Motion of Electrons on the Pressure Tensor

    Get PDF
    In space plasma, various effects of magnetic reconnection and turbulence cause the electron motion to significantly deviate from their Larmor orbits. Collectively these orbits affect the electron velocity distribution function and lead to the appearance of the "non-gyrotropic" elements in the pressure tensor. Quantification of this effect has important applications in space and laboratory plasma, one of which is tracing the electron diffusion region (EDR) of magnetic reconnection in space observations. Three different measures of agyrotropy of pressure tensor have previously been proposed, namely, AeA\varnothing_e, DngD_{ng} and QQ. The multitude of contradictory measures has caused confusion within the community. We revisit the problem by considering the basic properties an agyrotropy measure should have. We show that AeA\varnothing_e, DngD_{ng} and QQ are all defined based on the sum of the principle minors (i.e. the rotation invariant I2I_2) of the pressure tensor. We discuss in detail the problems of I2I_2-based measures and explain why they may produce ambiguous and biased results. We introduce a new measure AGAG constructed based on the determinant of the pressure tensor (i.e. the rotation invariant I3I_3) which does not suffer from the problems of I2I_2-based measures. We compare AGAG with other measures in 2 and 3-dimension particle-in-cell magnetic reconnection simulations, and show that AGAG can effectively trace the EDR of reconnection in both Harris and force-free current sheets. On the other hand, AeA\varnothing_e does not show prominent peaks in the EDR and part of the separatrix in the force-free reconnection simulations, demonstrating that AeA\varnothing_e does not measure all the non-gyrotropic effects in this case, and is not suitable for studying magnetic reconnection in more general situations other than Harris sheet reconnection.Comment: accepted by Phys. of Plasm

    Thermally stable low current consuming gallium and germanium chalcogenides for consumer and automotive memory applications

    No full text
    The phase change technology behind rewritable optical disks and the latest generation of electronic memories has provided clear commercial and technological advances for the field of data storage, by virtue of the many well known attributes, in particular scaling, cycling endurance and speed, that chalcogenide materials offer. While the switching power and current consumption of established germanium antimony telluride based memory cells are a major factor in chip design in real world applications, often the thermal stability of the device can be a major obstacle in the path to the full commercialisation. In this work we describe our research in material discovery and characterization for the purpose of identifying more thermally stable chalcogenides for applications in PCRAM

    Crossover from a pseudogap state to a superconducting state

    Full text link
    On the basis of our calculation we deduce that the particular electronic structure of cuprate superconductors confines Cooper pairs to be firstly formed in the antinodal region which is far from the Fermi surface, and these pairs are incoherent and result in the pseudogap state. With the change of doping or temperature, some pairs are formed in the nodal region which locates the Fermi surface, and these pairs are coherent and lead to superconductivity. Thus the coexistence of the pseudogap and the superconducting gap is explained when the two kinds of gaps are not all on the Fermi surface. It is also shown that the symmetry of the pseudogap and the superconducting gap are determined by the electronic structure, and non-s wave symmetry gap favors the high-temperature superconductivity. Why the high-temperature superconductivity occurs in the metal region near the Mott metal-insulator transition is also explained.Comment: 7 pages, 2 figure

    Pengaruh Konflik terhadap Stres Kerja dan Kepuasan Kerja Karyawan

    Full text link
    This study aims to determine the effect of the conflict on job stress, the effect of the conflict on employee job satisfaction and job stress influence on job satisfaction of employees at PT Bank Rakyat Indonesia Branch Office Gajah Mada Denpasar. The type of data used is quantitative and qualitative data by source and use primary and secondary data. A total of 105 employees serve as the respondents in this study. Analysis of the data using confirmatory factor analysis, analysis of Structural Equation Modeling and evaluation of SEM assumptions. Based on the results of the discussion, the conclusion obtained that: conflict positive effect on job stress, conflict negatively affect the employee job satisfaction, job stress and negatively affect job satisfaction of employees at PT Bank Rakyat Indonesia Branch Office Gajah Mada Denpasar

    Fingerprinting Hysteresis

    Full text link
    We test the predictive power of first-oder reversal curve (FORC) diagrams using simulations of random magnets. In particular, we compute a histogram of the switching fields of the underlying microscopic switching units along the major hysteresis loop, and compare to the corresponding FORC diagram. We find qualitative agreement between the switching-field histogram and the FORC diagram, yet differences are noticeable. We discuss possible sources for these differences and present results for frustrated systems where the discrepancies are more pronounced.Comment: 4 pages, 5 figure
    corecore