2,610 research outputs found

    BiSON data preparation: A correction for differential extinction and the weighted averaging of contemporaneous data

    Get PDF
    The Birmingham Solar Oscillations Network (BiSON) has provided high-quality high-cadence observations from as far back in time as 1978. These data must be calibrated from the raw observations into radial velocity and the quality of the calibration has a large impact on the signal-to-noise ratio of the final time series. The aim of this work is to maximise the potential science that can be performed with the BiSON data set by optimising the calibration procedure. To achieve better levels of signal-to-noise ratio we perform two key steps in the calibration process: we attempt a correction for terrestrial atmospheric differential extinction; and the resulting improvement in the calibration allows us to perform weighted averaging of contemporaneous data from different BiSON stations. The improvements listed produce significant improvement in the signal-to-noise ratio of the BiSON frequency-power spectrum across all frequency ranges. The reduction of noise in the power spectrum will allow future work to provide greater constraint on changes in the oscillation spectrum with solar activity. In addition, the analysis of the low-frequency region suggests we have achieved a noise level that may allow us to improve estimates of the upper limit of g-mode amplitudes.Comment: Accepted for publication in MNRAS; 10 pages, 7 figure

    Reliability of P mode event classification using contemporaneous BiSON and GOLF observations

    Full text link
    We carried out a comparison of the signals seen in contemporaneous BiSON and GOLF data sets. Both instruments perform Doppler shift velocity measurements in integrated sunlight, although BiSON perform measurements from the two wings of potassium absorption line and GOLF from one wing of the NaD1 line. Discrepancies between the two datasets have been observed. We show,in fact, that the relative power depends on the wing in which GOLF data observes. During the blue wing period, the relative power is much higher than in BiSON datasets, while a good agreement has been observed during the red period.Comment: 7 pages, HELAS II: Helioseismology, Asteroseismology, and MHD Connections, conference proceedin

    Aerodynamic Interference on Finned Slender Body

    Get PDF
    Aerodynamic interference can occur between high-speed slender bodies when in close proximity. A complex flowfield develops where shock and expansion waves from a generator body impinge upon the adjacent receiver body and modify its aerodynamic characteristics in comparison to the isolated case. The aim of this research is to quantify and understand the multibody interference effects that arise between a finned slender body and a second disturbance generator body. A parametric wind tunnel study was performed in which the effects of the receiver incidence and axial stagger were considered. Computational fluid dynamic simulations showed good agreement with the measurements, and these were used in the interpretation of the experimental results. The overall interference loads for a given multibody configuration were found to be a complex function of the pressure footprints from the compression and expansion waves emanating from the generator body as well as the flow pitch induced by the generator shockwave. These induced interference loads change sign as the shock impingement location moves aft over the receiver and in some cases cause the receiver body to become statically unstable. Overall, the observed interference effects can modify the subsequent body trajectories and may increase the likelihood of a collision

    Performance of the Birmingham Solar-Oscillations Network (BiSON)

    Get PDF
    The Birmingham Solar-Oscillations Network (BiSON) has been operating with a full complement of six stations since 1992. Over 20 years later, we look back on the network history. The meta-data from the sites have been analysed to assess performance in terms of site insolation, with a brief look at the challenges that have been encountered over the years. We explain how the international community can gain easy access to the ever-growing dataset produced by the network, and finally look to the future of the network and the potential impact of nearly 25 years of technology miniaturisation.Comment: 31 pages, 19 figures. Accepted by Solar Physics: 2015 October 20. First online: 2015 December 7. Open Acces

    Changes in the sensitivity of solar p-mode frequency shifts to activity over three solar cycles

    Get PDF
    Low-degree solar p-mode observations from the long-lived Birmingham Solar Oscillations Network (BiSON) stretch back further than any other single helioseismic data set. Results from BiSON have suggested that the response of the mode frequency to solar activity levels may be different in different cycles. In order to check whether such changes can also be seen at higher degrees, we compare the response of medium-degree solar p-modes to activity levels across three solar cycles using data from Big Bear Solar Observatory (BBSO), Global Oscillation Network Group (GONG), Michelson Doppler Imager (MDI) and Helioseismic and Magnetic Imager (HMI), by examining the shifts in the mode frequencies and their sensitivity to solar activity levels. We compare these shifts and sensitivities with those from radial modes from BiSON. We find that the medium-degree data show small but significant systematic differences between the cycles, with solar cycle 24 showing a frequency shift about 10 per cent larger than cycle 23 for the same change in activity as determined by the 10.7 cm radio flux. This may support the idea that there have been changes in the magnetic properties of the shallow subsurface layers of the Sun that have the strongest influence on the frequency shifts.Comment: 6 pages, 3 figures, accepted by MNRAS 3rd July 201

    Why should we correct reported pulsation frequencies for stellar line-of-sight Doppler velocity shifts?

    Full text link
    In the age of Kepler and Corot, extended observations have provided estimates of stellar pulsation frequencies that have achieved new levels of precision, regularly exceeding fractional levels of a few parts in 10410^{4}. These high levels of precision now in principle exceed the point where one can ignore the Doppler shift of pulsation frequencies caused by the motion of a star relative to the observer. We present a correction for these Doppler shifts and use previously published pulsation frequencies to demonstrate the significance of the effect. We suggest that reported pulsation frequencies should be routinely corrected for stellar line-of-sight velocity Doppler shifts, or if a line-of-sight velocity estimate is not available, the frame of reference in which the frequencies are reported should be clearly stated.Comment: 5 pages, 1 figure, accepted for publication in MNRAS Letter

    Decarbonising universities: Case study of the University of Exeter’s green strategy plans based on analysing its energy demand in 2012–2020

    Get PDF
    This is the final version. Available on open access from MDPI via the DOI in this record. This study investigates the carbon footprint of the University of Exeter by analysing its energy consumption between 2012 and 2020 to assess its current standing in the process of achieving carbon neutrality. The study then explores the possible methods of reaching this target in line with the University of Exeter’s Environment & Climate Emergency Policy Statement. The leading part of the statement is as follows: “All Campus activities/operations shall have a carbon net zero impact and or result in environmental gain by 2030 and aims to be carbon net zero by 2050 (accounting for all associated activities and Scope 3 footprint)”. Using methods of energy consumption reduction, a new carbon footprint for Scope 1 and 2 emissions was calculated for the year 2030, which included phasing out oil and gas and swapping out inefficient systems, such as old heating or lighting. This reduced the emissions from 17.24 ktCO2e to 3.34 ktCO2e also greatly helped by the reduction in electricity grid conversion factors. The remaining emissions would be reduced further to net zero by on site solar and offsite wind investment

    A thorough analysis of the short- and mid-term activity-related variations in the solar acoustic frequencies

    Get PDF
    The frequencies of the solar acoustic oscillations vary over the activity cycle. The variations in other activity proxies are found to be well correlated with the variations in the acoustic frequencies. However, each proxy has a slightly different time behaviour. Our goal is to characterize the differences between the time behaviour of the frequency shifts and of two other activity proxies, namely, the area covered by sunspots and the 10.7cm flux. We define a new observable that is particularly sensitive to the short-term frequency variations. We then compare the observable when computed from model frequency shifts and from observed frequency shifts obtained with the Global Oscillation Network Group (GONG) for cycle 23. Our analysis shows that on the shortest time-scales the variations in the frequency shifts seen in the GONG observations are strongly correlated with the variations in the area covered by sunspots. However, a significant loss of correlation is still found. We verify that the times when the frequency shifts and the sunspot area do not vary in a similar way tend to coincide with the times of the maxima of the quasi-biennial variations seen in the solar seismic data. A similar analysis of the relation between the 10.7cm flux and the frequency shifts reveals that the short-time variations in the frequency shifts follow even more closely those of the 10.7cm flux than those of the sunspot area. However, a loss of correlation between frequency shifts and 10.7cm flux variations is still found around the same times.Comment: 7 pages, 6 figures, accepted for publication in MNRA

    Parametrizing the time-variation of the "surface term" of stellar p-mode frequencies: application to helioseismic data

    Get PDF
    The solar-cyle variation of acoustic mode frequencies has a frequency dependence related to the inverse mode inertia. The discrepancy between model predictions and measured oscillation frequencies for solar and solar-type stellar acoustic modes includes a significant frequency-dependent term known as the surface term that is also related to the inverse mode inertia. We parametrize both the surface term and the frequency variations for low-degree solar data from Birmingham Solar-Oscillations Network (BiSON) and medium-degree data from the Global Oscillations Network Group (GONG) using the mode inertia together with cubic and inverse frequency terms. We find that for the central frequency of rotationally split multiplets the cubic term dominates both the average surface term and the temporal variation, but for the medium-degree case the inverse term improves the fit to the temporal variation. We also examine the variation of the even-order splitting coefficients for the medium-degree data and find that, as for the central frequency, the latitude-dependent frequency variation, which reflects the changing latitudinal distribution of magnetic activity over the solar cycle, can be described by the combination of a cubic and an inverse function of frequency scaled by inverse mode inertia. The results suggest that this simple parametrization could be used to assess the activity-related frequency variation in solar-like asteroseismic targets.Comment: 13 pages, 11 figures. Accepted by MNRAS 13 October 201
    • …
    corecore