10 research outputs found

    Progress in the study of mercury methylation and demethylation in aquatic environments

    Get PDF

    Cambiamenti climatici e ambiente marino: effetti della temperatura e della salinita' sulla crescita in acquario del corallo Cladocora caespitosa

    No full text
    Consiglio Nazionale delle Ricerche - Biblioteca Centrale - P.le Aldo Moro, 7 , Rome / CNR - Consiglio Nazionale delle RichercheSIGLEITItal

    Dissolved inorganic nutrients in the western Mediterranean Sea (2004–2017)

    Get PDF
    Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. Understanding the complex interplay of changing ocean variables and the biological implication for marine ecosystems requires extensive data collection for monitoring, hypothesis testing, and validation of modelling products. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps, both in time and in space. To contribute to filling these gaps, an extensive dataset of dissolved inorganic nutrient observations (nitrate, phosphate, and silicate) was collected between 2004 and 2017 in the western Mediterranean Sea and subjected to rigorous quality control techniques to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent biogeochemical data product. The data product includes 870 stations of dissolved inorganic nutrients, including temperature and salinity, sampled during 24 cruises. Details of the quality control (primary and secondary quality control) applied are reported. The data are available in PANGAEA (https://doi.org/10.1594/PANGAEA.904172, Belgacem et al., 2019)

    An intertidal life: Combined effects of acidification and winter heatwaves on a coralline alga (Ellisolandia elongata) and its associated invertebrate community

    No full text
    In coastal marine ecosystems coralline algae often create biogenic reefs. These calcareous algal reefs affect their associated invertebrate communities via diurnal oscillations in photosynthesis, respiration and calcification processes. Little is known about how these biogenic reefs function and how they will be affected by climate change. We investigated the winter response of a Mediterranean intertidal biogenic reef, Ellissolandia elongata exposed in the laboratory to reduced pH conditions (i.e. ambient pH – 0.3, RCP 8.5) together with an extreme heatwave event (+1.4 °C for 15 days). Response variables considered both the algal physiology (calcification and photosynthetic rates) and community structure of the associated invertebrates (at taxonomic and functional level). The combination of a reduced pH with a heatwave event caused Ellisolandia elongata to significantly increase photosynthetic activity. The high variability of calcification that occurred during simulated night time conditions, indicates that there is not a simple, linear relationship between these two and may indicate that it will be resilient to future conditions of climate change. In contrast, the associated fauna were particularly negatively affected by the heatwave event, which impoverished the communities as opportunistic taxa became dominant. Local increases in oxygen and pH driven by the algae can buffer the microhabitat in the algal fronds, thus favouring the survival of small invertebrates

    Microbial Diversity of Mer Operon Genes and Their Potential Rules in Mercury Bioremediation and Resistance

    No full text
    corecore