788 research outputs found

    Brillouin light scattering studies of planar metallic magnonic crystals

    Full text link
    The application of Brillouin light scattering to the study of the spin-wave spectrum of one- and two-dimensional planar magnonic crystals consisting of arrays of interacting stripes, dots and antidots is reviewed. It is shown that the discrete set of allowed frequencies of an isolated nanoelement becomes a finite-width frequency band for an array of identical interacting elements. It is possible to tune the permitted and forbidden frequency bands, modifying the geometrical or the material magnetic parameters, as well as the external magnetic field. From a technological point of view, the accurate fabrication of planar magnonic crystals and a proper understanding of their magnetic excitation spectrum in the GHz range is oriented to the design of filters and waveguides for microwave communication systems

    A Perspective on Cephalopods Mimicry and Bioinspired Technologies toward Proprioceptive Autonomous Soft Robots

    Get PDF
    Octopus skin is an amazing source of inspiration for bioinspired sensors, actuators and control solutions in soft robotics. Soft organic materials, biomacromolecules and protein ingredients in octopus skin combined with a distributed intelligence, result in adaptive displays that can control emerging optical behavior, and 3D surface textures with rough geometries, with a remarkably high control speed (≈ms). To be able to replicate deformable and compliant materials capable of translating mechanical perturbations in molecular and structural chromogenic outputs, could be a glorious achievement in materials science and in the technological field. Soft robots are suitable platforms for soft multi-responsive materials, which can provide them with improved mechanical proprioception and related smarter behaviors. Indeed, a system provided with a “learning and recognition” functions, and a constitutive “mechanical” and “material intelligence” can result in an improved morphological adaptation in multi-variate environments responding to external and internal stimuli. This review aims to explore challenges and opportunities related to smart and chromogenic responsive materials for adaptive displays, reconfigurable and programmable soft skin, proprioceptive sensing system, and synthetic nervous control units for data processing, toward autonomous soft robots able to communicate and interact with users in open-world scenarios

    High-performance luminescent solar concentrators based on poly(Cyclohexylmethacrylate) (PCHMA) films

    Get PDF
    In this study, we report on the use of poly(cyclohexylmethacrylate) (PCHMA) as an alternative to the commonly used poly(methylmethacrylate) (PMMA) for the design of efficient luminescent solar concentrators (LSCs). PCHMA was selected due to its less polar nature with respect to PMMA, a characteristic that was reported to be beneficial in promoting the fluorophore dispersibility in the matrix, thus maximizing the efficiency of LSCs also at high doping. In this sense, LSC thin films based on PCHMA and containing different contents of Lumogen F Red 305 (LR, 0.2–1.8 wt%) demonstrated optical efficiencies (ηopt) comprising between 9.5% and 10.0%, i.e., about 0.5–1% higher than those collected from the LR/PMMA systems. The higher LR/polymer interactions occurred using the PCHMA matrix maximized the solar harvesting characteristics of the fluorophore and limited the influence of the adverse dissipative phenomena on the fluorophore quantum efficiency. These effects were also reflected by varying the LSC film thickness and reaching maximum ηopt of about 11.5% in the case of PCHMA films of about 30 µm

    Propagating spin waves excited by spin-transfer torque: A combined electrical and optical study

    Get PDF
    Nanocontact spin-torque oscillators are devices in which the generation of propagating spin waves can be sustained by spin transfer torque. In the present paper, we perform combined electrical and optical measurements in a single experimental setup to systematically investigate the excitation of spin waves by a nanocontact spin-torque oscillator and their propagation in a Ni80Fe20 extended layer. By using microfocused Brillouin light scattering we observe an anisotropic emission of spin waves, due to the broken symmetry imposed by the inhomogeneous Oersted field generated by the injected current. In particular, spin waves propagate on the side of the nanocontact where the Oersted field and the in-plane component of the applied magnetic field are antiparallel, while propagation is inhibited on the opposite side. Moreover, propagating spin waves are efficiently excited only in a limited frequency range corresponding to wavevectors inversely proportional to the size of the nanocontact. This frequency range obeys the dispersion relation for exchange-dominated spin waves in the far field, as confirmed by micromagnetic simulations of similar devices. The present results have direct consequences for spin wave based applications, such as synchronization, computation, and magnonics

    Simultaneous existence of two spin-wave modes in ultrathin Fe/GaAs(001) films studied by Brillouin Light Scattering: experiment and theory

    Full text link
    A double-peaked structure was observed in the {\it in-situ} Brillouin Light Scattering (BLS) spectra of a 6 \AA thick epitaxial Fe/GaAs(001) film for values of an external magnetic field HH, applied along the hard in plane direction, lower than a critical value Hc0.9H_c\simeq 0.9 kOe. This experimental finding is theoretically interpreted in terms of a model which assumes a non-homogeneous magnetic ground state characterized by the presence of perperpendicular up/down stripe domains. For such a ground state, two spin-wave modes, namely an acoustic and an optic mode, can exist. Upon increasing the field the magnetization tilts in the film plane, and for HHcH \ge H_{c} the ground state is homogeneous, thus allowing the existence of just a single spin-wave mode. The frequencies of the two spin-wave modes were calculated and successfully compared with the experimental data. The field dependence of the intensities of the corresponding two peaks that are present in the BLS spectra was also estimated, providing further support to the above-mentioned interpretation.Comment: Shortened version (7 pages). Accepted for publication in Physical Review

    Use of bremsstrahlung radiation to identify hidden weak beta- sources: feasibility and possible use in radio-guided surgery

    Full text link
    The recent interest in beta- radionuclides for radio-guided surgery derives from the feature of the beta radiation to release energy in few millimeters of tissue. Such feature can be used to locate residual tumors with a probe located in its immediate vicinity, determining the resection margins with an accuracy of millimeters. The drawback of this technique is that it does not allow to identify tumors hidden in more than few mm of tissue. Conversely, the bremsstrahlung X-rays emitted by the interaction of the beta- radiation with the nuclei of the tissue are relatively penetrating. To complement the beta- probes, we have therefore developed a detector based on cadmium telluride, an X-ray detector with a high quantum efficiency working at room temperature. We measured the secondary emission of bremsstrahlung photons in a target of Polymethylmethacrylate (PMMA) with a density similar to living tissue. The results show that this device allows to detect a 1 ml residual or lymph-node with an activity of 1 kBq hidden under a layer of 10 mm of PMMA with a 3:1 signal to noise, i.e. with a five sigma discrimination in less than 5 s

    Asymmetry of spin wave dispersions in a hexagonal magnonic crystal

    Get PDF
    PublishedJournal ArticleWe report a study of the dispersion of spin waves in a hexagonal array of interacting ferromagnetic nanodisks for two orthogonal orientations of the in-plane applied magnetic field, i.e., either parallel or perpendicular to the direction of first neighbour disks. The experimental data were modelled using the dynamical matrix method, and the results were interpreted in terms of the effective wave vector model. We have found that spin waves propagating in the two orthogonal directions exhibit marked asymmetry concerning the existence of maxima/minima in their dispersion curves and the sign of their group velocities. © 2013 AIP Publishing LLC.This work was supported by the European Community's Seventh Framework Programme (FP7/2007-2013) under Grant Agreement Nos. 228673 (MAGNONICS) and 233552 (DYNAMAG) and by MIUR-PRIN 2010-11 Project 2010ECA8P3 “DyNanoMag.” V.V.K. also acknowledges funding received from EPSRC of the UK under project EP/E055087/1
    corecore