5,331 research outputs found

    Male Partners' Involvement Towards Prenatal Screening and Diagnostic Testing for Down Syndrome

    Full text link
    Introduction: Now, male partners' involvement in prenatal screening and diagnostic testing for Down syndrome is becoming increasingly recognized as well to ensure that parents are well informed of the risks and benefits of screening. The aim of study was to understand the degree of male partners' involvement during pregnancy in Singapore population. Methods: A cross-sectional survey of male partners' attending prenatal counseling was performed. The instrument used to measure the level of involvement is a self-assessment questionnaire that identifies the role of male partners with a Likert scale. Descriptive statistics was used to analyze data gained. Result: A total of 107 participants completed the questionnaire. Sixty-seven percent of male partners were found to have a highlevel of involvement while 32.7% was found to have a medium level of involvement. Most of them stated that women can pursue prenatal testing without their permission. Male partners found it more important for them to accompany their spouse to amniocentesis or CVS than to the Down syndrome screening test. When participants were asked about how much information about Down syndrome they sought prior to the appointment, how much discussion they had with their spouse about Down syndrome testing, and about whether they or their spouse should be the first person to receive test results, most stated that they were undecided. Conclusion: These results revealed that male partners were very well involved in the Down syndrome testing during pregnancy and future studies should assess possible underlying factors that influence male partners' involvement

    First-Order Transition and Critical End-Point in Vortex Liquids in Layered Superconductors

    Full text link
    We calculate various thermodynamic quantities of vortex liquids in a layered superconductor by using the nonperturbative parquet approximation method, which was previously used to study the effect of thermal fluctuations in two-dimensional vortex systems. We find there is a first-order transition between two vortex liquid phases which differ in the magnitude of their correlation lengths. As the coupling between the layers increases,the first-order transition line ends at a critical point. We discuss the possible relation between this critical end-point and the disappearance of the first-order transition which is observed in experiments on high temperature superconductors at low magnetic fields.Comment: 9 pages, 5 figure

    Pattern formation of indirect excitons in coupled quantum wells

    Full text link
    Using a nonlinear Schr\"odinger equation including short-range two-body attraction and three-body repulsion, we investigate the spatial distribution of indirect excitons in semiconductor coupled quantum wells. The results obtained can interpret the experimental phenomenon that annular exciton cloud first contracts then expands when the number of confined excitons is increased in impurity potential well, as observed by Lai \emph{et al.} [Lai etal.et al., Science \textbf{303}, 503 (2004)]. In particular, the model reconciles the patterns of exciton rings reported by Butov \emph{et al.} [Butov etal.et al., Nature \textbf{418}, 751 (2002)]. At higher densities, the model predicts much richer patterns, which could be tested by future experiments.Comment: 5 Revtex4 pages, 3 figure

    Millisecond spin-flip times of donor-bound electrons in GaAs

    Full text link
    We observe millisecond spin-flip relaxation times of donor-bound electrons in high-purity n-GaAs . This is three orders of magnitude larger than previously reported lifetimes in n-GaAs . Spin-flip times are measured as a function of magnetic field and exhibit a strong power-law dependence for fields greater than 4 T . This result is in qualitative agreement with previously reported theory and measurements of electrons in quantum dots.Comment: 4 pages, 4 figure

    Motility induced changes in viscosity of suspensions of swimming microbes in extensional flows

    Full text link
    Suspensions of motile cells are model systems for understanding the unique mechanical properties of living materials which often consist of ensembles of self-propelled particles. We present here a quantitative comparison of theory against experiment for the rheology of such suspensions. The influence of motility on viscosities of cell suspensions is studied using a novel acoustically-driven microfluidic capillary-breakup extensional rheometer. Motility increases the extensional viscosity of suspensions of algal pullers, but decreases it in the case of bacterial or sperm pushers. A recent model [Saintillan, Phys. Rev. E, 2010, 81:56307] for dilute active suspensions is extended to obtain predictions for higher concentrations, after independently obtaining parameters such as swimming speeds and diffusivities. We show that details of body and flagellar shape can significantly determine macroscale rheological behaviour.Comment: 12 pages, 1 appendix, 7 figures, submitted to Soft Matter - under revie

    John Chalmers DaCosta (1863-1933): restoration of the old operating table.

    Get PDF
    John Chalmers DaCosta was an influential chairman and the first Samuel D. Gross Professor of Surgery at Jefferson Medical College in Philadelphia. He was well known throughout the field as a skilled surgeon, passionate speaker, and exceptional writer. In addition to countless accomplishments during his career, DaCosta was deeply dedicated to the preservation and commemoration of surgical history. This ideology was exemplified when he set out on a mission to recover the old wooden operating table used by many of his iconic mentors including Samuel D. Gross, Joseph Pancoast, and William W. Keen. This table was originally used for surgical demonstrations and anatomy lessons in a lecture room of the Ely Building and later in the great amphitheater of the Jefferson Sansom Street Hospital. It was found forgotten in the basement of the College Building and was promptly refurbished, donned with dedicatory plaques, and returned to its honored position in the medical college. Dr. DaCosta also contributed a detailed article recalling the history of the table and the notable leaders in surgery who taught and practiced on its surface. The old table currently stands proudly in the entranceway of the Department of Surgery where it will remain as a cherished symbol of the early beginnings of surgical practice and education

    Targeted modulation of tropoelastin structure and assembly

    Get PDF
    Tropoelastin, as the monomer unit of elastin, assembles into elastic fibers that impart strength and resilience to elastic tissues. Tropoelastin is also widely used to manufacture versatile materials with specific mechanical and biological properties. The assembly of tropoelastin into elastic fibers or biomaterials is crucially influenced by key submolecular regions and specific residues within these domains. In this work, we identify the functional contributions of two rarely occurring negatively charged residues, glutamate 345 in domain 19 and glutamate 414 in domain 21, in jointly maintaining the native conformation of the tropoelastin hinge, bridge and foot regions. Alanine substitution of E345 and/or E414 variably alters the positioning and interactive accessibility of these regions, as illustrated by nanostructural studies and detected by antibody and cell probes. These structural changes are associated with a lower propensity for monomer coacervation, cross-linking into morphologically and functionally atypical hydrogels, and markedly impaired and abnormal elastic fiber formation. Our work indicates the crucial significance of both E345 and E414 residues in modulating specific local structure and higher-order assembly of human tropoelastin

    Teleportation via thermally entangled state of a two-qubit Heisenberg XX chain

    Full text link
    We find that quantum teleportation, using the thermally entangled state of two-qubit Heisenberg XX chain as a resource, with fidelity better than any classical communication protocol is possible. However, a thermal state with a greater amount of thermal entanglement does not necessarily yield better fidelity. It depends on the amount of mixing between the separable state and maximally entangled state in the spectra of the two-qubit Heisenberg XX model.Comment: 5 pages, 1 tabl

    The Stability of the Replica Symmetric State in Finite Dimensional Spin Glasses

    Full text link
    According to the droplet picture of spin glasses, the low-temperature phase of spin glasses should be replica symmetric. However, analysis of the stability of this state suggested that it was unstable and this instability lends support to the Parisi replica symmetry breaking picture of spin glasses. The finite-size scaling functions in the critical region of spin glasses below T_c in dimensions greater than 6 can be determined and for them the replica symmetric solution is unstable order by order in perturbation theory. Nevertheless the exact solution can be shown to be replica-symmetric. It is suggested that a similar mechanism might apply in the low-temperature phase of spin glasses in less than six dimensions, but that a replica symmetry broken state might exist in more than six dimensions.Comment: 5 pages. Modified to include a paragraph on the relation of this work to that of Newman and Stei
    corecore