92,373 research outputs found

    Interaction of a neutral cloud moving through a magnetized plasma

    Get PDF
    Current collection by outgassing probes in motion relative to a magnetized plasma may be significantly affected by plasma processes that cause electron heating and cross field transport. Simulations of a neutral gas cloud moving across a static magnetic field are discussed. The authors treat a low-Beta plasma and use a 2-1/2 D electrostatic code linked with the authors' Plasma and Neutral Interaction Code (PANIC). This study emphasizes the understanding of the interface between the neutral gas cloud and the surrounding plasma where electrons are heated and can diffuse across field lines. When ionization or charge exchange collisions occur a sheath-like structure is formed at the surface of the neutral gas. In that region the crossfield component of the electric field causes the electron to E times B drift with a velocity of the order of the neutral gas velocity times the square root of the ion to electron mass ratio. In addition a diamagnetic drift of the electron occurs due to the number density and temperature inhomogeneity in the front. These drift currents excite the lower-hybrid waves with the wave k-vectors almost perpendicular to the neutral flow and magnetic field again resulting in electron heating. The thermal electron current is significantly enhanced due to this heating

    Almost Special Holonomy in Type IIA&M Theory

    Full text link
    We consider spaces M_7 and M_8 of G_2 holonomy and Spin(7) holonomy in seven and eight dimensions, with a U(1) isometry. For metrics where the length of the associated circle is everywhere finite and non-zero, one can perform a Kaluza-Klein reduction of supersymmetric M-theory solutions (Minkowksi)_4\times M_7 or (Minkowksi)_3\times M_8, to give supersymmetric solutions (Minkowksi)_4\times Y_6 or (Minkowksi)_3\times Y_7 in type IIA string theory with a non-singular dilaton. We study the associated six-dimensional and seven-dimensional spaces Y_6 and Y_7 perturbatively in the regime where the string coupling is weak but still non-zero, for which the metrics remain Ricci-flat but that they no longer have special holonomy, at the linearised level. In fact they have ``almost special holonomy,'' which for the case of Y_6 means almost Kahler, together with a further condition. For Y_7 we are led to introduce the notion of an ``almost G_2 manifold,'' for which the associative 3-form is closed but not co-closed. We obtain explicit classes of non-singular metrics of almost special holonomy, associated with the near Gromov-Hausdorff limits of families of complete non-singular G_2 and Spin(7) metrics.Comment: Latex, 26 page

    Film-stability in a vertical rotating tube with a core-gas flow

    Get PDF
    Linear hydrodynamic stability of interface between Newtonian liquid film and core fluid under influence of swirl, core flow, and gravit

    Finite-temperature effects on the number fluctuation of ultracold atoms across the Superfluid to Mott-insulator transition

    Full text link
    We study the thermodynamics of ultracold Bose atoms in optical lattices by numerically diagonalizing the mean-field Hamiltonian of the Bose-Hubbard model. This method well describes the behavior of long-range correlations and therefore is valid deep in the superfluid phase. For the homogeneous Bose-Hubbard model, we draw the finite-temperature phase diagram and calculate the superfluid density at unity filling. We evaluate the finite-temperature effects in a recent experiment probing number fluctuation [Phys. Rev. Lett. \textbf{96}, 090401 (2006)], and find that our finite-temperature curves give a better fitting to the experimental data, implying non-negligible temperature effects in this experiment.Comment: 7 pages,7 figures, final version for publicatio

    Parallel processing architecture for computing inverse differential kinematic equations of the PUMA arm

    Get PDF
    In advanced robot control problems, on-line computation of inverse Jacobian solution is frequently required. Parallel processing architecture is an effective way to reduce computation time. A parallel processing architecture is developed for the inverse Jacobian (inverse differential kinematic equation) of the PUMA arm. The proposed pipeline/parallel algorithm can be inplemented on an IC chip using systolic linear arrays. This implementation requires 27 processing cells and 25 time units. Computation time is thus significantly reduced
    corecore