155 research outputs found

    About multiplicities and applications to Bezout numbers

    Full text link
    Let (A,m,k)(A,\mathfrak{m},\Bbbk) denote a local Noetherian ring and q\mathfrak{q} an ideal such that ℓA(M/qM)<∞\ell_A(M/\mathfrak{q}M) < \infty for a finitely generated AA-module MM. Let \au = a_1,\ldots,a_d denote a system of parameters of MM such that ai∈qci∖qci+1a_i \in \mathfrak{q}^{c_i} \setminus \mathfrak{q}^{c_i+1} for i=1,…,di=1,\ldots,d. It follows that \chi := e_0(\au;M) - c \cdot e_0(\mathfrak{q};M) \geq 0, where c=c1⋅…⋅cdc = c_1\cdot \ldots \cdot c_d. The main results of the report are a discussion when χ=0\chi = 0 resp. to describe the value of χ\chi in some particular cases. Applications concern results on the multiplicity e_0(\au;M) and applications to Bezout numbers.Comment: 11 pages, to appear Springer INdAM-Series, Vol. 20 (2017

    Matrix String Theory and its Moduli Space

    Get PDF
    The correspondence between Matrix String Theory in the strong coupling limit and IIA superstring theory can be shown by means of the instanton solutions of the former. We construct the general instanton solutions of Matrix String Theory which interpolate between given initial and final string configurations. Each instanton is characterized by a Riemann surface of genus h with n punctures, which is realized as a plane curve. We study the moduli space of such plane curves and find out that, at finite N, it is a discretized version of the moduli space of Riemann surfaces: instead of 3h-3+n its complex dimensions are 2h-3+n, the remaining h dimensions being discrete. It turns out that as NN tends to infinity, these discrete dimensions become continuous, and one recovers the full moduli space of string interaction theory.Comment: 30 pages, LaTeX, JHEP.cls class file, minor correction

    Conifold geometries, topological strings and multi-matrix models

    Full text link
    We study open B-model representing D-branes on 2-cycles of local Calabi--Yau geometries. To this end we work out a reduction technique linking D-branes partition functions and multi-matrix models in the case of conifold geometries so that the matrix potential is related to the complex moduli of the conifold. We study the geometric engineering of the multi-matrix models and focus on two-matrix models with bilinear couplings. We show how to solve this models in an exact way, without resorting to the customary saddle point/large N approximation. The method consists of solving the quantum equations of motion and using the flow equations of the underlying integrable hierarchy to derive explicit expressions for correlators. Finally we show how to incorporate in this formalism the description of several group of D-branes wrapped around different cycles.Comment: 35 pages, 5.3 and 6 revise

    Fibonacci numbers and self-dual lattice structures for plane branches

    Full text link
    Consider a plane branch, that is, an irreducible germ of curve on a smooth complex analytic surface. We define its blow-up complexity as the number of blow-ups of points necessary to achieve its minimal embedded resolution. We show that there are F2n−4F_{2n-4} topological types of blow-up complexity nn, where FnF_{n} is the nn-th Fibonacci number. We introduce complexity-preserving operations on topological types which increase the multiplicity and we deduce that the maximal multiplicity for a plane branch of blow-up complexity nn is FnF_n. It is achieved by exactly two topological types, one of them being distinguished as the only type which maximizes the Milnor number. We show moreover that there exists a natural partial order relation on the set of topological types of plane branches of blow-up complexity nn, making this set a distributive lattice, that is, any two of its elements admit an infimum and a supremum, each one of these operations beeing distributive relative to the second one. We prove that this lattice admits a unique order-inverting bijection. As this bijection is involutive, it defines a duality for topological types of plane branches. The type which maximizes the Milnor number is also the maximal element of this lattice and its dual is the unique type with minimal Milnor number. There are Fn−2F_{n-2} self-dual topological types of blow-up complexity nn. Our proofs are done by encoding the topological types by the associated Enriques diagrams.Comment: 21 pages, 16 page

    Quantum symmetric pairs and representations of double affine Hecke algebras of type C∨CnC^\vee C_n

    Get PDF
    We build representations of the affine and double affine braid groups and Hecke algebras of type C∨CnC^\vee C_n, based upon the theory of quantum symmetric pairs (U,B)(U,B). In the case U=Uq(glN)U=U_q(gl_N), our constructions provide a quantization of the representations constructed by Etingof, Freund and Ma in arXiv:0801.1530, and also a type BCBC generalization of the results in arXiv:0805.2766.Comment: Final version, to appear in Selecta Mathematic

    Cohomology of bundles on homological Hopf manifold

    Full text link
    We discuss the properties of complex manifolds having rational homology of S1×S2n−1S^1 \times S^{2n-1} including those constructed by Hopf, Kodaira and Brieskorn-van de Ven. We extend certain previously known vanishing properties of cohomology of bundles on such manifolds.As an application we consider degeneration of Hodge-deRham spectral sequence in this non Kahler setting.Comment: To appear in Proceedings of 2007 conference on Several complex variables and Complex Geometry. Xiamen. Chin

    Verdier specialization via weak factorization

    Full text link
    Let X in V be a closed embedding, with V - X nonsingular. We define a constructible function on X, agreeing with Verdier's specialization of the constant function 1 when X is the zero-locus of a function on V. Our definition is given in terms of an embedded resolution of X; the independence on the choice of resolution is obtained as a consequence of the weak factorization theorem of Abramovich et al. The main property of the specialization function is a compatibility with the specialization of the Chern class of the complement V-X. With the definition adopted here, this is an easy consequence of standard intersection theory. It recovers Verdier's result when X is the zero-locus of a function on V. Our definition has a straightforward counterpart in a motivic group. The specialization function and the corresponding Chern class and motivic aspect all have natural `monodromy' decompositions, for for any X in V as above. The definition also yields an expression for Kai Behrend's constructible function when applied to (the singularity subscheme of) the zero-locus of a function on V.Comment: Minor revision. To appear in Arkiv f\"or Matemati

    Modules of Abelian integrals and Picard-Fuchs systems

    Full text link
    We give a simple proof of an isomorphism between the two C[t]\mathbb{C}[t]-modules: the module of relative cohomologies Λ2/dH∧Λ1\Lambda^2/dH\land \Lambda^1 and the module of Abelian integrals corresponding to a regular at infinity polynomial HH in two variables. Using this isomorphism, we prove existence and deduce some properties of the corresponding Picard-Fuchs system.Comment: A separate section discusses Fuchsian properties of the Picard-Fuchs system, Morse condition exterminated. Few errors were correcte

    Twistor theory of hyper-K{\"a}hler metrics with hidden symmetries

    Full text link
    We briefly review the hierarchy for the hyper-K\"ahler equations and define a notion of symmetry for solutions of this hierarchy. A four-dimensional hyper-K\"ahler metric admits a hidden symmetry if it embeds into a hierarchy with a symmetry. It is shown that a hyper-K\"ahler metric admits a hidden symmetry if it admits a certain Killing spinor. We show that if the hidden symmetry is tri-holomorphic, then this is equivalent to requiring symmetry along a higher time and the hidden symmetry determines a `twistor group' action as introduced by Bielawski \cite{B00}. This leads to a construction for the solution to the hierarchy in terms of linear equations and variants of the generalised Legendre transform for the hyper-K\"ahler metric itself given by Ivanov & Rocek \cite{IR96}. We show that the ALE spaces are examples of hyper-K\"ahler metrics admitting three tri-holomorphic Killing spinors. These metrics are in this sense analogous to the 'finite gap' solutions in soliton theory. Finally we extend the concept of a hierarchy from that of \cite{DM00} for the four-dimensional hyper-K\"ahler equations to a generalisation of the conformal anti-self-duality equations and briefly discuss hidden symmetries for these equations.Comment: Final version. To appear in the August 2003 special issue of JMP on `Integrability, Topological Solitons, and Beyond

    Finite Temperature Time-Dependent Effective Theory for the Phase Field in two-dimensional d-wave Neutral Superconductor

    Full text link
    We derive finite temperature time-dependent effective actions for the phase of the pairing field, which are appropriate for a 2D electron system with both non-retarded d- and s-wave attraction. As for s-wave pairing the d-wave effective action contains terms with Landau damping, but their structure appears to be different from the s-wave case due to the fact that the Landau damping is determined by the quasiparticle group velocity v_{g}, which for d-wave pairing does not have the same direction as the non-interacting Fermi velocity v_{F}. We show that for d-wave pairing the Landau term has a linear low temperature dependence and in contrast to the s-wave case are important for all finite temperatures. A possible experimental observation of the phase excitations is discussed.Comment: 23 pages, RevTeX4, 10 EPS figures; final version to appear in PR
    • …
    corecore