4,964 research outputs found

    An interactive graphics package for the automatic node renumbering of finite element matrices

    Get PDF
    An interactive graphics software package which allows users to display the non-zero structure of large sparse symmetric materials was described and methods used to implement it as a portable FORTRAN callable subroutine were summarized. In particular, the system permits the display of the resulting matrix after reordering the rows and columns, with the reordering scheme either defined by the user or automatically generated by the program with the aim of reducing matrix bandwidth and profile. Although the primary application of the package has been to the finite element analysis of structures, it is equally well suited to the many other areas of engineering and science which use sparse matrices

    Surface diffusion coefficients by thermodynamic integration: Cu on Cu(100)

    Full text link
    The rate of diffusion of a Cu adatom on the Cu(100) surface is calculated using thermodynamic integration within the transition state theory. The results are found to be in excellent agreement with the essentially exact values from molecular-dynamics simulations. The activation energy and related entropy are shown to be effectively independent of temperature, thus establishing the validity of the Arrhenius law over a wide range of temperatures. Our study demonstrates the equivalence of diffusion rates calculated using thermodynamic integration within the transition state theory and direct molecular-dynamics simulations.Comment: 4 pages (revtex), two figures (postscript

    Developing numerical libraries in Java

    Full text link
    The rapid and widespread adoption of Java has created a demand for reliable and reusable mathematical software components to support the growing number of compute-intensive applications now under development, particularly in science and engineering. In this paper we address practical issues of the Java language and environment which have an effect on numerical library design and development. Benchmarks which illustrate the current levels of performance of key numerical kernels on a variety of Java platforms are presented. Finally, a strategy for the development of a fundamental numerical toolkit for Java is proposed and its current status is described.Comment: 11 pages. Revised version of paper presented to the 1998 ACM Conference on Java for High Performance Network Computing. To appear in Concurrency: Practice and Experienc

    Pensée réflexive et liberté (étude des fragments de Jules Lagneau)

    Get PDF

    Diffusion of Pt dimers on Pt(111)

    Full text link
    We report the results of a density-functional study of the diffusion of Pt dimers on the (111) surface of Pt. The calculated activation energy of 0.37 eV is in {\em exact} agreement with the recent experiment of Kyuno {\em et al.} \protect{[}Surf. Sci. {\bf 397}, 191 (1998)\protect{]}. Our calculations establish that the dimers are mobile at temperatures of interest for adatom diffusion, and thus contribute to mass transport. They also indicate that the diffusion path for dimers consists of a sequence of one-atom and (concerted) two-atom jumps.Comment: Pour pages postscript formatted, including one figure; submitted to Physical Review B; other papers of interest can be found at url http://www.centrcn.umontreal.ca/~lewi

    Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    Get PDF
    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset. ©2016. American Geophysical Union. All Rights Reserved

    Melt onset over Arctic sea ice controlled by atmospheric moisture transport

    Get PDF
    The timing of melt onset affects the surface energy uptake throughout the melt season. Yet the processes triggering melt and causing its large interannual variability are not well understood. Here we show that melt onset over Arctic sea ice is initiated by positive anomalies of water vapor, clouds, and air temperatures that increase the downwelling longwave radiation (LWD) to the surface. The earlier melt onset occurs; the stronger are these anomalies. Downwelling shortwave radiation (SWD) is smaller than usual at melt onset, indicating that melt is not triggered by SWD. When melt occurs early, an anomalously opaque atmosphere with positive LWD anomalies preconditions the surface for weeks preceding melt. In contrast, when melt begins late, clearer than usual conditions are evident prior to melt. Hence, atmospheric processes are imperative for melt onset. It is also found that spring LWD increased during recent decades, consistent with trends toward an earlier melt onset

    Anisotropy of Growth of the Close-Packed Surfaces of Silver

    Full text link
    The growth morphology of clean silver exhibits a profound anisotropy: The growing surface of Ag(111) is typically very rough while that of Ag(100) is smooth and flat. This serious and important difference is unexpected, not understood, and hitherto not observed for any other metal. Using density functional theory calculations of self-diffusion on flat and stepped Ag(100) we find, for example, that at flat regions a hopping mechanism is favored, while across step edges diffusion proceeds by an exchange process. The calculated microscopic parameters explain the experimentally reported growth properties.Comment: RevTeX, 4 pages, 3 figures in uufiles form, to appear in Phys. Rev. Let
    corecore