502 research outputs found

    Towards Baxter equation in supersymmetric Yang-Mills theories

    Full text link
    We perform an explicit two-loop calculation of the dilatation operator acting on single trace Wilson operators built from holomorphic scalar fields and an arbitrary number of covariant derivatives in N=2 and N=4 supersymmetric Yang-Mills theories. We demonstrate that its eigenspectrum exhibits double degeneracy of opposite parity eigenstates which suggests that the two-loop dilatation operator is integrable. Moreover, the two-loop anomalous dimensions in the two theories differ from each other by an overall normalization factor indicating that the phenomenon is not sensitive to the presence of the conformal symmetry. Relying on these findings, we try to uncover integrable structures behind the two-loop dilatation operator using the method of the Baxter Q-operator. We propose a deformed Baxter equation which exactly encodes the spectrum of two-loop anomalous dimensions and argue that it correctly incorporates a peculiar feature of conformal scalar operators -- the conformal SL(2) spin of such operators is modified in higher loops by an amount proportional to their anomalous dimension. From the point of view of spin chains this property implies that the underlying integrable model is ``self-tuned'' -- the all-loop Hamiltonian of the spin chain depends on the total SL(2) spin which in its turn is proportional to the Hamiltonian.Comment: Latex, 18 pages, 3 figure

    N=4 superconformal Ward identities for correlation functions

    Full text link
    In this paper we study the four-point correlation function of the energy-momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang-Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.Comment: 41 page

    Event shapes in N=4 super-Yang-Mills theory

    Get PDF
    We study event shapes in N=4 SYM describing the angular distribution of energy and R-charge in the final states created by the simplest half-BPS scalar operator. Applying the approach developed in the companion paper arXiv:1309.0769, we compute these observables using the correlation functions of certain components of the N=4 stress-tensor supermultiplet: the half-BPS operator itself, the R-symmetry current and the stress tensor. We present master formulas for the all-order event shapes as convolutions of the Mellin amplitude defining the correlation function of the half-BPS operators, with a coupling-independent kernel determined by the choice of the observable. We find remarkably simple relations between various event shapes following from N=4 superconformal symmetry. We perform thorough checks at leading order in the weak coupling expansion and show perfect agreement with the conventional calculations based on amplitude techniques. We extend our results to strong coupling using the correlation function of half-BPS operators obtained from the AdS/CFT correspondence.Comment: 52 pages, 6 figures; v2: typos correcte

    Energy-energy correlations in N=4 SYM

    Full text link
    We present a new approach to computing energy-energy correlations in gauge theories that exploits their relation to correlation functions and bypasses the use of scattering amplitudes. We illustrate its power by calculating energy-energy correlations in the maximally supersymmetric Yang-Mills theory (N=4 SYM) in the next-to-leading order approximation.Comment: 5 page

    From correlation functions to event shapes

    Get PDF
    We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a non-trivial analytic continuation which, in the framework of CFT, can elegantly be performed in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results on the four-point correlation function of half-BPS scalar operators. We compute the double scalar flow correlation in N=4 SYM, at weak and strong coupling and show that it agrees with known results obtained by different techniques. One of the remarkable features of the N=4 theory is that the scalar and energy flow correlations are proportional to each other. Imposing natural physical conditions on the energy flow correlations (finiteness, positivity and regularity), we formulate additional constraints on the four-point correlation functions in N=4 SYM that should be valid at any coupling and away from the planar limit.Comment: 40 pages, 1 figure; v2: typos correcte

    Integrability in Yang-Mills theory on the light cone beyond leading order

    Full text link
    The one-loop dilatation operator in Yang-Mills theory possesses a hidden integrability symmetry in the sector of maximal helicity Wilson operators. We calculate two-loop corrections to the dilatation operator and demonstrate that while integrability is broken for matter in the fundamental representation of the SU(3) gauge group, for the adjoint SU(N_c) matter it survives the conformal symmetry breaking and persists in supersymmetric N=1, N=2 and N=4 Yang-Mills theories.Comment: 4 pages, 2 figure

    A next-to-leading order QCD analysis of deeply virtual Compton scattering amplitudes

    Get PDF
    We present a next-to-leading order (NLO) QCD analysis of unpolarized and polarized deeply virtual Compton scattering (DVCS) amplitudes, for two different input scenarios, in the MSˉ\bar{MS} scheme. We illustrate and discuss the size of the NLO effects and the behavior of the amplitudes in skewedness, ζ\zeta, and photon virtuality, Q2Q^2. In the unpolarized case, at fixed Q2Q^2, we find a remarkable effective power-law behaviour in ζ\zeta, akin to Regge factorization, over several orders of magnitude in ζ\zeta. We also quantify the ratio of real to imaginary parts of the DVCS amplitudes and their sensitivity to changes of the factorization scale.Comment: 12 pages, 12 figures, revtex, final version to be published in Phys. Rev. D. Corrected error in MRSA' distribution and modified extraplation behavior of GRSV00 distribution. Corrected error in +i\epsilon treatment. Taking now correct sheaf of log. Errors in subtraction equations corrected. Figures and results for affected imaginary part of NLO amplitude changed accordingl
    • …
    corecore