238 research outputs found

    Predation and the Maintenance of Color Polymorphism in a Habitat Specialist Squamate

    Get PDF
    Multiple studies have addressed the mechanisms maintaining polymorphism within a population. However, several examples exist where species inhabiting diverse habitats exhibit local population-specific polymorphism. Numerous explanations have been proposed for the maintenance of geographic variation in color patterns. For example, spatial variation in patterns of selection or limited gene flow can cause entire populations to become fixed for a single morph, resulting in separate populations of the same species exhibiting separate and distinct color morphs. The mottled rock rattlesnake (Crotalus lepidus lepidus) is a montane species that exhibits among-population color polymorphism that correlates with substrate color. Habitat substrate in the eastern part of its range is composed primarily of light colored limestone and snakes have light dorsal coloration, whereas in the western region the substrate is primarily dark and snakes exhibit dark dorsal coloration. We hypothesized that predation on high contrast color and blotched patterns maintain these distinct color morphs. To test this we performed a predation experiment in the wild by deploying model snakes at 12 sites evenly distributed within each of the two regions where the different morphs are found. We employed a 2×2 factorial design that included two color and two blotched treatments. Our results showed that models contrasting with substrate coloration suffered significantly more avian attacks relative to models mimicking substrates. Predation attempts on blotched models were similar in each substrate type. These results support the hypothesis that color pattern is maintained by selective predation

    Geriatric hip fracture clinical pathway: the Hong Kong experience

    Get PDF
    Geriatric hip fracture is one of the commonest fractures in orthopaedic trauma. There is a trend of further increase in its incidence in the coming decades. Besides the development of techniques and implants to overcome the difficulties in fixation of osteoporosis bone, the general management of the hip fracture is also very challenging in terms of the preparation of the generally poorer pre-morbid state and complicate social problems associated with this group of patients. In order to cope with the increasing demand, our hospital started a geriatric hip fracture clinical pathway in 2007. The aim of this pathway is to provide better care for this group of patients through multidisciplinary approach. From year 2007 to 2009, we had managed 964 hip fracture patients. After the implementation of the pathway, the pre-operative and the total length of stay in acute hospital were shortened by over 5 days. Other clinical outcomes including surgical site infection, 30 days mortality and also incidence of pressure sore improved when compared to the data before the pathway. The rate of surgical site infection was 0.98%, and the 30 days mortality was 1.67% in 2009. The active participation of physiotherapists, occupational therapists as well as medical social workers also helped to formulate the discharge plan as early as the patient is admitted. In conclusion, a well-planned and executed clinical pathway for hip fracture can improve the clinical outcomes of the geriatric hip fractures

    In vivo measurement of bending stiffness in fracture healing

    Get PDF
    BACKGROUND: Measurement of the bending stiffness a healing fracture represents a valid variable in the assessment of fracture healing. However, currently available methods typically have high measurement errors, even for mild pin loosening. Furthermore, these methods cannot provide actual values of bending stiffness, which precludes comparisons among individual fractures. Thus, even today, little information is available with regards to the fracture healing pattern with respect to actual values of bending stiffness. Our goals were, therefore: to develop a measurement device that would allow accurate and sensitive measurement of bending stiffness, even in the presence of mild pin loosening; to describe the course of healing in individual fractures; and help to evaluate whether the individual pattern of bending stiffness can be predicted at an early stage of healing. METHODS: A new measurement device has been developed to precisely measure the bending stiffness of the healing fracture by simulating four-point-bending. The system was calibrated on aluminum models and intact tibiae. The influence of pin loosening on measurement error was evaluated. The system was tested at weekly intervals in an animal experiment to determine the actual bending stiffness of the fracture. Transverse fractures were created in the right tibia of twelve sheep, and then stabilized with an external fixator. At ten weeks, bending stiffness of the tibiae were determined in a four-point-bending test device to validate the in-vivo-measurement data. RESULTS: In-vivo bending stiffness can be measured accurately and sensitive, even in the early phase of callus healing. Up to a bending stiffness of 10 Nm/degree, measurement error was below 3.4% for one pin loose, and below 29.3% for four pins loose, respectively. Measurement of stiffness data over time revealed a significant logarithmic increase between the third and seventh weeks, whereby the logarithmic rate of change among sheep was similar, but started from different levels. Comparative measurements showed that early individual changes between the third and fourth weeks can be used as a predictor of bending stiffness at seven weeks (r = 0.928) and at ten weeks (r = 0.710). CONCLUSION: Bending stiffness can be measured precisely, with less error in the case of pin loosening. Prediction of the future healing course of the individual fracture can be assessed by changes from the third to the fourth week, with differences in stiffness levels. Therefore, the initial status of the fracture seems to have a high impact on the individual healing course

    Long-term durability of alumina ceramic heads in THA

    Get PDF
    Background: The optimal type of bearing for hip arthroplasty remains a matter of debate. Ceramic-on-polyethylene (CoP) bearings are frequently used in younger and more active patients to reduce wear and increase biocompatibility compared to Metal-on-Polyethylene (MoP) bearings. However, in comparison to metal heads, the fracture risk of ceramic heads is higher. In addition, ceramic head fractures pose a serious complication which often necessitates major revision surgery. To date, there are no long-term data (>20 years of follow-up) reporting fracture rates of the ceramic femoral heads in CoP bearings. The purpose of this research was to investigate long-term CoP fracture rate. Methods: We evaluated the clinical and radiographic results of 348 cementless THAs treated with 2nd generation Biolox® Al2O3 Ceramic-on-Polyethylene (CoP) bearings consecutively implanted between January 1985 and December 1989. The mean age at implantation was 57 years. The patients were followed for a minimum of 20 years. At the final 111 had died, and 5 were lost to follow-up. The cumulative incidence of ceramic head fractures in the long-term was estimated using a competing risk analysis. Results: The cumulative incidence of ceramic head fracture after 22-years was estimated with a competing risk analysis at 0.29% after 22-years (SE = 2.09%; 95% - CI: 0.03-1.5%). The radiographic analysis revealed no impending failures at final follow-up. Discussion/Conclusion: The fracture rate of second-generation ceramic heads using a CoP articulation remains very low into the third decade after cementless THA

    US SOLAS Science Report

    Get PDF
    The article of record may be found at https://doi.org/10.1575/1912/27821The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G).This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)

    US SOLAS Science Report

    Get PDF
    The Surface Ocean – Lower Atmosphere Study (SOLAS) (http://www.solas-int.org/) is an international research initiative focused on understanding the key biogeochemical-physical interactions and feedbacks between the ocean and atmosphere that are critical elements of climate and global biogeochemical cycles. Following the release of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016), the Ocean-Atmosphere Interaction Committee (OAIC) was formed as a subcommittee of the Ocean Carbon and Biogeochemistry (OCB) Scientific Steering Committee to coordinate US SOLAS efforts and activities, facilitate interactions among atmospheric and ocean scientists, and strengthen US contributions to international SOLAS. In October 2019, with support from OCB, the OAIC convened an open community workshop, Ocean-Atmosphere Interactions: Scoping directions for new research with the goal of fostering new collaborations and identifying knowledge gaps and high-priority science questions to formulate a US SOLAS Science Plan. Based on presentations and discussions at the workshop, the OAIC and workshop participants have developed this US SOLAS Science Plan. The first part of the workshop and this Science Plan were purposefully designed around the five themes of the SOLAS Decadal Science Plan (2015-2025) (Brévière et al., 2016) to provide a common set of research priorities and ensure a more cohesive US contribution to international SOLAS.This report was developed with federal support of NSF (OCE-1558412) and NASA (NNX17AB17G)

    Parametric design optimisation of proximal humerus plates based on finite element method

    Get PDF
    Optimal treatment of proximal humerus fractures remains controversial. Locking plates offer theoretical advantages but are associated with complications in the clinic. This study aimed to perform parametric design optimisation of proximal humerus plates to enhance their mechanical performance. A finite element (FE) model was developed that simulated a two-part proximal humerus fracture that had been treated with a Spatial Subchondral Support (S3) plate and subjected to varus bending. The FE model was validated against in vitro biomechanical test results. The predicted load required to apply 5 mm cantilever varus bending was only 0.728% lower. The FE model was then used to conduct a parametric optimisation study to determine the orientations of inferomedial plate screws that would yield minimum fracture gap change (i.e. optimal stability). The feasible design space was automatically identified by imposing clinically relevant constraints, and the creation process of each FE model for the design optimisation was automated. Consequently, 538 FE models were generated, from which the obtained optimal model had 4.686% lower fracture gap change (0.156 mm) than that of the manufacturer’s standard plate. Whereas its screws were oriented towards the inferomedial region and within the range of neck-shaft angle of a healthy subject. The methodology presented in this study promises future applications in patient-specific design optimisation of implants for other regions of the human body

    Performance reporting for consumers: issues for the Australian private hospital sector

    Get PDF
    A group of consumers of private hospital services and their carers collaborated with staff of a Melbourne private hospital and with industry representatives to develop a consumer-driven performance report on cardiac services. During the development process participating consumers identified situational and structural barriers to their right to be informed of costs, to choice and to quality care. Their growing appreciation of these barriers led them to a different perspective on performance reporting, which resulted in their redirecting the project. The consumer participants no longer wanted a performance report that provided comparative quantitative data. Instead they designed a report that outlined the structures, systems and processes the hospital had in place to address the quality and safety of services provided. In addition, consumer participants developed a decision support tool for consumers to use in navigating the private health care sector. The journey of these consumers in creating a consumer driven performance report for a private hospital service may assist those responsible for governance of Australia's health system in choosing appropriate strategies and mechanisms to enhance private hospital accountability. The situational and institutional industry barriers to choice, information and quality identified by these consumers need to be addressed before public performance reporting for private hospitals is introduced in Australia

    Effectiveness of prolonged use of continuous passive motion (CPM), as an adjunct to physiotherapy, after total knee arthroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Adequate and intensive rehabilitation is an important requirement for successful total knee arthroplasty.</p> <p>Although research suggests that Continuous Passive Motion (CPM) should be implemented in the first rehabilitation phase after surgery, there is substantial debate about the duration of each session and the total period of CPM application. A Cochrane review on this topic concluded that short-term use of CPM leads to greater short-term range of motion. It also suggested, however, that future research should concentrate on the treatment period during which CPM should be administered.</p> <p>Methods</p> <p>In a randomised controlled trial we investigated the effectiveness of prolonged CPM use in the home situation as an adjunct to standardised PT. Efficacy was assessed in terms of faster improvements in range of motion (RoM) and functional recovery, measured at the end of the active treatment period, 17 days after surgery.</p> <p>Sixty patients with knee osteoarthritis undergoing TKA and experiencing early postoperative flexion impairment were randomised over two treatment groups. The experimental group received CPM + PT for 17 consecutive days after surgery, whereas the usual care group received the same treatment during the in-hospital phase (i.e. about four days), followed by PT alone (usual care) in the first two weeks after hospital discharge.</p> <p>From 18 days to three months after surgery, both groups received standardised PT. The primary focus of rehabilitation was functional recovery (e.g. ambulation) and regaining RoM in the knee.</p> <p>Results</p> <p>Prolonged use of CPM slightly improved short-term RoM in patients with limited RoM at the time of discharge after total knee arthroplasty when added to a semi-standard PT programme. Assessment at 6 weeks and three months after surgery found no long-term effects of this intervention Neither did we detect functional benefits of the improved RoM at any of the outcome assessments.</p> <p>Conclusion</p> <p>Although results indicate that prolonged CPM use might have a small short-term effect on RoM, routine use of prolonged CPM in patients with limited RoM at hospital discharge should be reconsidered, since neither long-term effects nor transfer to better functional performance was detected.</p> <p>Trial Registration</p> <p>ISRCTN85759656</p
    • …
    corecore